闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗傜紒鈧笟鈧畷婊堫敇閻戝棙瀵岄梺闈涚墕濡鎱ㄨ缁辨帡鎮╅崘鑼紝闂佺粯渚楅崳锝嗘叏閳ь剟鏌曢崼婵囶棤闁告ɑ鎹囬弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑闁糕剝鍔掔花濠氭⒑閸濆嫬鈧悂鎮樺┑瀣垫晜妞ゆ劑鍊楃壕濂稿级閸稑濡界€规洖鐬奸埀顒冾潐濞叉ḿ鏁幒妤嬬稏婵犻潧顑愰弫鍕煢濡警妲峰瑙勬礋濮婃椽宕ㄦ繝鍕窗闂佺ǹ瀛╂繛濠囧箚鐏炶В鏋庨柟鎯ь嚟閸橀亶姊洪崫鍕偍闁告柨鐭傞幃姗€鎮╅悽鐢碉紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺鍝勫暊閸嬫捇鏌涢妶鍛ч柡灞剧洴婵$兘顢欓悡搴樻嫽闂備浇妗ㄧ粈浣该洪銏犺摕闁哄浄绱曢悿鈧梺鍝勬川閸婎偊濡烽敂杞扮盎闂佹寧妫侀褍鈻嶅澶嬬厵妞ゆ梻鐡斿▓婊呪偓瑙勬礃椤ㄥ棗顕ラ崟顒傜瘈濞达絽澹婂Λ婊堟⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介弫鍐磼濮樻唻绱卞┑鐘灱閸╂牠宕濋弴銏犲強闁靛鏅滈悡鐔兼煙闁箑鏋涢柛鏂款儔閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹪鐛笟鈧獮鎺楀箣濠垫劗鈧櫕绻濋悽闈涗粶闁瑰啿绻樺畷婵嗏枎閹惧疇鎽曢梺缁樻⒒閸樠呯矆閸曨垱鐓忛柛顐g箖椤ユ粍銇勮箛銉﹀

從雙曲線的左焦點(diǎn)引圓的切線,切點(diǎn)為T,延長(zhǎng)FT交雙曲線右支于點(diǎn)P,O為坐標(biāo)原點(diǎn),M為PF 的中點(diǎn),則 的大小關(guān)系為

A. B.
C. D.不能確定

B

解析試題分析:將點(diǎn)P置于第一象限.設(shè)F1是雙曲線的右焦點(diǎn),連接PF1.∵M(jìn)、O分別為FP、FF1的中點(diǎn),∴|MO|=|PF1|.又由雙曲線定義得, |PF|-|PF1|=2a, |FT|==b.故|MO|-|MT|=|PF1|-|MF|+|FT|=(|PF1|-|PF|)+|FT|
=b-a.故選B.
考點(diǎn):本題主要考查了直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與雙曲線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
點(diǎn)評(píng):解決該試題的關(guān)鍵是將點(diǎn)P置于第一象限.設(shè)F1是雙曲線的右焦點(diǎn),連接PF1.由M、O分別為FP、FF1的中點(diǎn),知|MO|= |PF1|.由雙曲線定義,知|PF|-|PF1|=2a,|FT|=b.由此知|MO|-|MT|=(|PF1|-|PF|)+|FT|=b-a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

過拋物線上一定點(diǎn),作兩條直線分別交拋物線于.當(dāng)的斜率存在且傾斜角互補(bǔ)時(shí),則的值為(   )

A.B.C.D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若橢圓的左、右焦點(diǎn)分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點(diǎn)分成5:3兩段,則此橢圓的離心率為     (   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)、分別為雙曲線的左、右焦點(diǎn).若在雙曲線右支上存在點(diǎn),滿足,且到直線的距離等于雙曲線的實(shí)軸長(zhǎng),則該雙曲線的漸近線方程為(  )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,把橢圓的長(zhǎng)軸分成等份,過每個(gè)分點(diǎn)作軸的垂線交橢圓的上半部分于七個(gè)點(diǎn),是橢圓的一個(gè)焦點(diǎn),則(    )

A.28 B.30 C.35 D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若雙曲線的左焦點(diǎn)在拋物線的準(zhǔn)線上,則的值為 (      )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

橢圓的焦距是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在平面直角坐標(biāo)系中,雙曲線中心在原點(diǎn),焦點(diǎn)在軸上,一條漸近線方程為,則它的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在直角坐標(biāo)平面內(nèi),已知點(diǎn),動(dòng)點(diǎn)滿足條件:,則點(diǎn)的軌跡方程是(    ).

A. B. C.() D.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�