19.設(shè)a、x∈R,且復(fù)數(shù)x2+ax+1+3i恒不是純虛數(shù),則實數(shù)a的范圍是(-2,2).

分析 若復(fù)數(shù)x2+ax+1+3i恒為純虛數(shù),求出a的范圍,利用補(bǔ)集的定義即可得出答案

解答 解:若復(fù)數(shù)x2+ax+1+3i恒為純虛數(shù),
則x2+ax+1=0,
則△=a2-4×1≥0,
解得a≤-2或a≥2,
由于復(fù)數(shù)x2+ax+1+3i恒不是純虛數(shù),則實數(shù)a的范圍是(-2,2),
故答案為:(-2,2)

點評 本題考查了純虛數(shù)的定義、補(bǔ)集的意義,考查了計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知正實數(shù)a,b滿足a+2b=1,則$\frac{1}{a}$+$\frac{a}$的最小值為( 。
A.1+2$\sqrt{2}$B.1+$\sqrt{2}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=5sinxcosx-5$\sqrt{3}$cos2x+$\frac{5\sqrt{3}}{2}$(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)對稱軸和對稱中心;
(3)f(x)在[${\frac{π}{6}$,$\frac{2π}{3}}$]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,a,b,c分別是角A,B,C的對邊,且$\sqrt{3}$asinB-bcosA=b,
(1)求∠A的大;
(2)若b+c=4,當(dāng)a取最小值時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x>0,y>0,且滿足x+$\frac{y}{2}$-$\frac{1}{x}$-$\frac{8}{y}$=8,則2x+y的最小值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.$\int_{-a}^a{(xcosx+5sinx)}$dx=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,AA1=AB=AC=3,BC=2,D是BC的中點,F(xiàn)是CC1上一點,且CF=2,E是AA1上一點,且AE=1.
(1)求證:C1E∥平面ADF;
(2)求證:B1F⊥平面ADF;
(3)求三棱錐D-ABF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x,y的取值如表所示,若y與x線性相關(guān),且線性回歸方程為$\hat y=\hat bx+6$,則$\stackrel{∧}$的值為( 。
x123
y645
A.$\frac{1}{10}$B.$\frac{1}{2}$C.$-\frac{1}{10}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=4x2+2x-2+mex有兩個不同的零點,則實數(shù)m取值范圍為( 。
A.[0,1)B.[0,2)∪{-$\frac{18}{{e}^{2}}$}C.(0,2)∪{-$\frac{18}{{e}^{2}}$}D.[0,2$\sqrt{e}$)∪{-$\frac{18}{{e}^{2}}$}

查看答案和解析>>

同步練習(xí)冊答案