考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=sin(2x-
),則函數(shù)y=ln(-t).根據(jù)復(fù)合函數(shù)的單調(diào)性,本題即求函數(shù)t的增區(qū)間且t<0.結(jié)合函數(shù)t=sin(2x-
)的圖象可得 2kπ-
≤2x-
<2kπ+0,k∈z.由此解得x的范圍,可得函數(shù)y的單調(diào)減區(qū)間.
解答:
解:∵函數(shù)y=lnsin(-2x+
)=ln[-sin(2x-
)],令t=sin(2x-
),則函數(shù)y=ln(-t).
根據(jù)復(fù)合函數(shù)的單調(diào)性,本題即求函數(shù)t的增區(qū)間且t<0.
結(jié)合函數(shù)t=sin(2x-
)的圖象可得 2kπ-
≤2x-
<2kπ+0,k∈z.
解得 kπ-
≤x<kπ+
,k∈z,故函數(shù)y的單調(diào)減區(qū)間為[kπ-
,kπ+
),k∈Z,
故選:D.
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性,正弦函數(shù)的圖象和性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.