分析 設(shè)出點的坐標,由題意得到$\overrightarrow{MP}$=3$\overrightarrow{PN}$,或$\overrightarrow{MP}$=-3$\overrightarrow{PN}$,根據(jù)向量的共線即可求出.
解答 解:設(shè)點P(x,y),M(2,0),N(3,-2),
∴$\overrightarrow{MP}$=(x-2,y),$\overrightarrow{PN}$=(3-x,-2-y),
∵點P在直線MN上,且|$\overrightarrow{MP}$|=3|$\overrightarrow{PN}$|,
∴$\overrightarrow{MP}$=3$\overrightarrow{PN}$,或$\overrightarrow{MP}$=-3$\overrightarrow{PN}$,
即(x-2,y)=3(3-x,-2-y),或(x-2,y)=-3(3-x,-2-y),
即$\left\{\begin{array}{l}{x-2=9-3x}\\{y=-6-3y}\end{array}\right.$或$\left\{\begin{array}{l}{x-2=-9+3x}\\{y=6+3y}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=\frac{11}{4}}\\{y=-\frac{3}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{7}{2}}\\{y=-3}\end{array}\right.$,
∴點P的坐標為($\frac{11}{4}$,-$\frac{3}{2}$)或($\frac{7}{2}$,-3),
故答案為:($\frac{11}{4}$,-$\frac{3}{2}$)或($\frac{7}{2}$,-3),
點評 本題考查了平面向量的坐標運算問題,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-5,1) | B. | (-∞,-5)∪(1,+∞) | C. | (-1,5) | D. | (-∞,-1)∪(5,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 65 | B. | 56 | C. | P65 | D. | C65 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com