8.已知△ABC的三個頂點坐標分別為A(1,2),B(3,4),C(-1,2),BC的中點為D,則$\overrightarrow{AD}$=(0,1).

分析 直接利用中點坐標公式求解D的坐標,利用距離公式求解即可.

解答 解:△ABC的三個頂點坐標分別為A(1,2),B(3,4),C(-1,2),BC的中點為D,
可得D(1,3),$\overrightarrow{AD}$=(0,1)
故答案為:(0,1).

點評 本題考查兩點間距離公式的應(yīng)用,中點坐標公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某幾何體的三視圖如圖所示,則該幾何體的表面積為$\frac{7}{2}$$\sqrt{3}$+$\frac{\sqrt{6}}{2}$+$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=$\left\{\begin{array}{l}{{2}^{x},0<x≤1}\\{\frac{1}{2}f(x-1),x>1}\end{array}\right.$,則方程f(x)=$\frac{1}{x}$在[-3,+∞)上的所有實根之和為( 。
A.4B.3C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知M(2,0),N(3,-2),點P在直線MN上,且|$\overrightarrow{MP}$|=3|$\overrightarrow{PN}$|,則點P的坐標為($\frac{11}{4}$,-$\frac{3}{2}$)或($\frac{7}{2}$,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,在△ABC中,點M是BC的中點,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,點N在AC上,且AN=2NC,AM與BN相交于點P,AP=λAM,求
(1)λ的值;
(2)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{CP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點A(1,2),B(3,1),則線段AB的垂直平分線的斜率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.根據(jù)下列條件,求橢圓的標準方程.
(1)兩個焦點的坐標分別為(-4,0)和(4,0),且橢圓經(jīng)過點(5,0);
(2)中心在原點,焦點在坐標軸上,且經(jīng)過(2,0)和(0,1)兩點;
(3)經(jīng)過點(2,-3)且與橢圓9x2+4y2=36有共同的焦點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)y=3sin($\frac{π}{3}$-$\frac{x}{2}$)的
(1)單調(diào)區(qū)間;
(2)最值及取得最值時的x的取值集合;
(3)對稱軸,對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)對任意x∈[0,+∞),都有f(x+1)=-f(x),當x∈[0,1)時,f(x)=x,若函數(shù)g(x)=f(x)-${log}_{{a}^{(x+1)}}$(0<a<1)在區(qū)間[0,6]上有3個零點,則實數(shù)a的取值范圍是( 。
A.[$\frac{1}{7}$,$\frac{1}{5}$)B.($\frac{1}{7}$,$\frac{1}{5}$)C.(0,$\frac{1}{7}$)D.($\frac{1}{5}$,1)

查看答案和解析>>

同步練習(xí)冊答案