【題目】若關(guān)于x的不等式x2+(a﹣1)x+1<0有解,則實數(shù)a的取值范圍是 .
【答案】(﹣∞,﹣1)∪(3,+∞)
【解析】解:關(guān)于x的不等式x2+(a﹣1)x+1<0有解,∴方程x2+(a﹣1)x+1=0有兩個不等實根,
∴△=(a﹣1)2﹣4>0,
解得a<﹣1或a>3,
∴實數(shù)a的取值范圍是(﹣∞,﹣1)∪(3,+∞).
所以答案是:(﹣∞,﹣1)∪(3,+∞).
【考點精析】解答此題的關(guān)鍵在于理解解一元二次不等式的相關(guān)知識,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(m+2cos2x)cos(2x+θ)為奇函數(shù),且f( )=0,其中m∈R,θ∈(0,π)
(Ⅰ)求函數(shù)f(x)的圖象的對稱中心和單調(diào)遞增區(qū)間
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且f( + )=﹣ ,c=1,ab=2 ,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知g(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,g(x)=﹣ln(1﹣x),函數(shù)f(x)= ,若f(2﹣x2)>f(x),則x的取值范圍是( )
A.(﹣∞,﹣2)∪(1,+∞)
B.(﹣∞,1)∪(2,+∞)
C.(﹣2,1)
D.(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 且x>0).若存在實數(shù)p,q(p<q),使得f(x)≤0的解集恰好為[p,q],則a的取值范圍是( )
A.(0, ]
B.(一∞, ]
C.(0, )
D.(一∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ. (Ⅰ)求直角坐標(biāo)下圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點P(l,2),設(shè)圓C與直線l交于點A,B,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司設(shè)計如圖所示的環(huán)狀綠化景觀帶,該景觀帶的內(nèi)圈由兩條平行線段(圖中的AB,DC)和兩個半圓構(gòu)成,設(shè)AB=xm,且x≥80.
(1)若內(nèi)圈周長為400m,則x取何值時,矩形ABCD的面積最大?
(2)若景觀帶的內(nèi)圈所圍成區(qū)域的面積為 m2 , 則x取何值時,內(nèi)圈周長最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)= ,有下列5個結(jié)論:
①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點;
⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個不同實根x1 , x2 , 則x1+x2=3.
則其中所有正確結(jié)論的序號是 . (請寫出全部正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時,有 恒成立,則不等式x2f(x)>0的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知F1、F2是橢圓G: 的左、右焦點,直線l:y=k(x+1)經(jīng)過左焦點F1 , 且與橢圓G交于A、B兩點,△ABF2的周長為 .
(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線l,使得△ABF2為等腰直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com