【題目】已知函數(shù).

(1)當時,求函數(shù)在點處的切線方程;

(2)若,求函數(shù)的單調區(qū)間;

(3)若函數(shù)有兩個極值點,若過兩點的直線軸的交點在曲線上,求的值.

【答案】(1);(2)見解析;(3)

【解析】

(1)當時,求得,解得,,利用導數(shù)的幾何意義,即可求解,得到答案.

(2)求得,由,解得,分類討論,求得即可得到函數(shù)的單調性;

(3)求得,由為方程的兩個根,求得,進而求得,得出兩點在直線上,求得軸的交點為,代入,即可求解.

(1)由題意,當時,,則,可得,

所以點處的切線方程為,即.

(2)由題意,得

,,

①當時,恒成立,所以上單增;

②當時,.

+

0

0

+

極大值

極小值

所以單增區(qū)間為,單減區(qū)間為.

(3)由函數(shù),則,

由題設知為方程的兩個根,故有,解得

同理,

所以兩點在直線上,

軸的交點為,得,

由題設,點在曲線上,

所以

解得,所以的值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(注意:在試題卷上作答無效)

已知數(shù)列中,.

)設,求數(shù)列的通項公式;

)求使不等式成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線Cy24x的焦點為F,過F的直線lC交于AB兩點,點M的坐標為(﹣1,0.

1)當lx軸垂直時,求ABM的外接圓方程;

2)記AMF的面積為S1,BMF的面積為S2,當S14S2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年,在慶祝中華人民共和國成立周年之際,又迎來了以“創(chuàng)軍人榮耀,筑世界和平”為宗旨的第七屆世界軍人運動會.據(jù)悉,這次軍運會將于日至日在美麗的江城武漢舉行,屆時將有來自全世界多個國家和地區(qū)的近萬名軍人運動員參賽.相對于奧運會、亞運會等大型綜合賽事,軍運會或許對很多人來說還很陌生.為此,武漢某高校為了在學生中更廣泛的推介普及軍運會相關知識內容,特在網(wǎng)絡上組織了一次“我所知曉的武漢軍運會”知識問答比賽,為便于對答卷進行對比研究,組委會抽取了名男生和名女生的答卷,他們的考試成績頻率分布直方圖如下:

(注:問卷滿分為分,成績的試卷為“優(yōu)秀”等級)

(1)從現(xiàn)有名男生和名女生答卷中各取一份,分別求答卷成績?yōu)椤皟?yōu)秀”等級的概率;

(2)求列聯(lián)表中,的值,并根據(jù)列聯(lián)表回答:能否在犯錯誤的概率不超過的前提下認為“答卷成績?yōu)閮?yōu)秀等級與性別有關”?

總計

優(yōu)秀

非優(yōu)秀

總計

(3)根據(jù)男、女生成績頻率分布直方圖,對他們的成績的優(yōu)劣進行比較.

附:參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖像在點處的切線與直線平行,求實數(shù)的值;

(Ⅱ)討論函數(shù)的單調性;

(Ⅲ)若在函數(shù)定義域內,總有成立,試求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(請寫出式子在寫計算結果)有4個不同的小球,4個不同的盒子,現(xiàn)在要把球全部放入盒內:

1)共有多少種方法?

2)若每個盒子不空,共有多少種不同的方法?

3)恰有一個盒子不放球,共有多少種放法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對在直角坐標系的第一象限內的任意兩點,作如下定義:,那么稱點是點的“上位點”,同時點是點的“下位點”.

1)試寫出點的一個“上位點”坐標和一個“下位點”坐標;

2)設、均為正數(shù),且點是點的上位點,請判斷點是否既是點的“下位點”又是點的“上位點”,如果是請證明,如果不是請說明理由;

3)設正整數(shù)滿足以下條件:對任意實數(shù),總存在,使得點既是點的“下位點”,又是點的“上位點”,求正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與圓有且僅有兩個公共點,點、、分別是橢圓上的動點、左焦點、右焦點,三角形面積的最大值是

(1)求橢圓的方程;

(2)若點在橢圓第一象限部分上運動,過點作圓的切線,過點的垂線,求證:交點的縱坐標的絕對值為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,已知,.

(1)求證:;

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案