已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值
(1)求函數(shù)f(x)的解析式;
(2)求證:對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若過點A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實數(shù)m的范圍.
【答案】分析:(1)解析式中有兩個參數(shù),故需要得到兩個方程求參數(shù),由于函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值,由極值存在的條件恰好可以得到兩個關(guān)于參數(shù)的兩個方程,由此解析式易求.
(2)欲證對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2,都有|f(x1)-f(x2)|≤4,可以求出函數(shù)在區(qū)間[-1,1]上的最值,若最大值減去最小值的差小于等于4,則問題得到證明,故問題轉(zhuǎn)化為研究函數(shù)在區(qū)間[-1,1]上的單調(diào)性求最值的問題.
(3)由于點A(1,m)(m≠-2),驗證知此點不在函數(shù)圖象上,可設(shè)出切點坐標M(x,y),然后用兩種方式表示出斜率,建立關(guān)于切點橫坐標的方程2x3-3x2+m+3=0,再借助函數(shù)的單調(diào)性與極值確定其有三個解的條件即可.
解答:解:(1)f′(x)=3ax2+2bx-3,依題意,f′(1)=f′(-1)=0,解得a=1,b=0.
∴f(x)=x3-3x
(2)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1),
當-1<x<1時,f′(x)<0,故f(x)在區(qū)間[-1,1]上為減函數(shù),
fmax(x)=f(-1)=2,fmin(x)=f(1)=-2
∵對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2,
都有|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|
|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4
(3)f′(x)=3x2-3=3(x+1)(x-1),
∵曲線方程為y=x3-3x,∴點A(1,m)不在曲線上.
設(shè)切點為M(x,y),切線的斜率為(左邊用導數(shù)求出,右邊用斜率的兩點式求出),
整理得2x3-3x2+m+3=0.
∵過點A(1,m)可作曲線的三條切線,故此方程有三個不同解,下研究方程解有三個時參數(shù)所滿足的條件
設(shè)g(x)=2x3-3x2+m+3,則g′(x)=6x2-6x
由g′(x)=0,得x=0或x=1.
∴g(x)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.
∴函數(shù)g(x)=2x3-3x2+m+3的極值點為x=0,x=1
∴關(guān)于x方程2x3-3x2+m+3=0有三個實根的充要條件是,解得-3<m<-2.
故所求的實數(shù)a的取值范圍是-3<m<-2.
點評:本題考點是利用導數(shù)研究函數(shù)的單調(diào)性,考查了函數(shù)極值存在的條件,利用導數(shù)求函數(shù)最值的方法以及導數(shù)研究函數(shù)在某點切線的問題,本題涉及到了求導公式,求最值的方法,導數(shù)的幾何意義等,綜合性強,難度較大,解題時注意體會.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案