已知奇函數(shù)f(x)在x>0時(shí),
f(x)=x3-x,f(x)在
[-2,-]上的值域?yàn)椋ā 。?/div>
| | | |
分析:利用導(dǎo)數(shù)先求函數(shù)f(x)在x∈[1,2]時(shí)的單調(diào)性,然后根據(jù)單調(diào)性可求函數(shù)在[
,2]上的最值,根據(jù)奇函數(shù)的對(duì)稱性可求函數(shù)在
[-2,-]上的值域
解答:解:當(dāng)x
∈[,2]時(shí),
f(x)=x3-x,
∴f′(x)=x
2-1
當(dāng)x∈[1,2]時(shí),f′(x)≥0,f(x)在[[1,2]單調(diào)遞增;當(dāng)x
∈[,1]時(shí),f′(x)≤0,f(x)在[
,1]上單調(diào)遞減
∴當(dāng)x=1時(shí),函數(shù)有最小值f(1)=-
,而f(
)<f(2)=
∴
-≤y≤∵函數(shù)f(x)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱
f(x)在
[-2,-]上的值域?yàn)閇
-,]
故選C
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解函數(shù)的最值,奇函數(shù)的對(duì)稱性的應(yīng)用是求解本題的關(guān)鍵.