已知函數(shù)的導函數(shù)為.求實數(shù)的取值范圍。

。

解析試題分析:對函數(shù)求導,得=,
代入,得,
=<0,求解即可,注意高次不等式的解法.
試題解析:由
=,
所以得
=<0,
解得.
考點:導數(shù),高次不等式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=在x=1處取得極值2.
(1)求函數(shù)f(x)的表達式;
(2)當m滿足什么條件時,函數(shù)f(x)在區(qū)間(m,2m+1)上單調遞增?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當時,求在區(qū)間上的最值;
(Ⅱ)討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),在點處的切線方程是(e為自然對數(shù)的底)。
(1)求實數(shù)的值及的解析式;
(2)若是正數(shù),設,求的最小值;
(3)若關于x的不等式對一切恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是實數(shù),函數(shù).
(1)若,求的值及曲線在點處的切線方程.
(2)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的圖像過原點,且在點處的切線與軸平行,對任意,都有.
(1)求函數(shù)在點處切線的斜率;
(2)求的解析式;
(3)設,對任意,都有.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知有兩個極值點、,且在區(qū)間(0,1)上有極大值,無極小值,則的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

曲線C:處的切線方程為     

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

曲線以點(1,-)為切點的切線的傾斜角為       

查看答案和解析>>

同步練習冊答案