10.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,a+c=4,(2-cosA)tan$\frac{B}{2}$=sinA,則△ABC的面積的最大值為$\sqrt{3}$.

分析 使用半角公式化簡(jiǎn)條件式,利用正弦定理得出a,b,c的關(guān)系,使用海倫公式和基本不等式得出面積的最大值.

解答 解:在△ABC中,∵(2-cosA)tan$\frac{B}{2}$=sinA,∴(2-cosA)$•\frac{sinB}{1+cosB}$=sinA,
即2sinB=sinA+sinAcosB+cosAsinB=sinA+sinC,
∴2b=a+c=4,∴b=2.
∵a+c=4,∴a=4-c.
∴S=$\sqrt{3(3-a)(3-b)(3-c)}$=$\sqrt{3(3-c)(c-1)}$
∵(3-c)(c-1)≤$(\frac{3-c+c-1}{2})^{2}$=1,
∴S≤$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了正弦定理,三角函數(shù)化簡(jiǎn),三角形的面積公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2sinx($\sqrt{3}$cosx+sinx)-2
(Ⅰ)若點(diǎn)P($\sqrt{3}$,-1)在角α的終邊上,求f(α)的值
(Ⅱ)若x∈[0,$\frac{π}{2}$],求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)x,y滿足不等式組$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,若M=$\frac{{(\frac{1}{2})}^{x+2y}}{{2}^{y}}$-$\frac{1}{2}$,則( 。
A.M>0B.M≥0C.M≤0D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=$\sqrt{lo{g}_{a}{x}^{2}-1}$的定義域是a>1時(shí),(-∞,-$\sqrt{a}$]∪[$\sqrt{a}$,+∞);
1>a>0時(shí),[-$\sqrt{a}$,0)∪(0,$\sqrt{a}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知sin$\frac{α}{2}$-cos$\frac{α}{2}$=-$\frac{\sqrt{2}}{2}$,則sinα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.角α=-$\frac{5π}{2}$,則sinα,tanα的值分別為( 。
A.-1,不存在B.1,不存在C.-1,0D.1,0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{x}{1+x}$.
(1)作出函數(shù)f(x)的大致圖象;
(2)指出函數(shù)f(x)的單調(diào)區(qū)間,并結(jié)合圖象,指出不等式f(x)<2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知sin($\frac{π}{4}$-x)=$\frac{5}{13}$,0<x<$\frac{π}{4}$,則cos2x=$\frac{120}{169}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=3${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案