【題目】已知橢圓的離心率為,,分別是其左、右焦點(diǎn),且過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若在直線上任取一點(diǎn),從點(diǎn)的外接圓引一條切線,切點(diǎn)為.問是否存在點(diǎn),恒有?請說明理由.

【答案】(1) (2) ,或

【解析】

(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.

(2)先求出的外接圓的方程,設(shè)點(diǎn)為點(diǎn)為,則由可得對任意的恒成立,故可得關(guān)于的方程,從而求得的坐標(biāo).

解:(1)因?yàn)闄E圓的離心率為,所以. ①

又橢圓過點(diǎn),所以代入得. ②

. ③

由①②③,解得.所以橢圓的標(biāo)準(zhǔn)方程為.

(2)由(1)得,,的坐標(biāo)分別是.

因?yàn)?/span>的外接圓的圓心一定在邊的垂直平分線上,

的外接圓的圓心一定在軸上,

所以可設(shè)的外接圓的圓心為,半徑為,圓心的坐標(biāo)為

則由及兩點(diǎn)間的距離公式,得,

解得.

所以圓心的坐標(biāo)為,半徑,

所以的外接圓的方程為,即.

設(shè)點(diǎn)為點(diǎn)為,因?yàn)?/span>

所以,

化簡,得,

所以,消去,得

解得.

當(dāng)時,

當(dāng)時,.

所以存在點(diǎn),或滿足條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)求的定義域;并證明是定義域上的奇函數(shù);

2)判斷在定義域上的單調(diào)性(無需證明);

3)求使不等式解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,討論的單調(diào)性;

(2)若上有兩個零點(diǎn)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有12,13,23.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新個稅法于2019年1月1日進(jìn)行實(shí)施.為了調(diào)查國企員工對新個稅法的滿意程度,研究人員在地各個國企中隨機(jī)抽取了1000名員工進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中.

(1)求的值并估計(jì)被調(diào)查的員工的滿意程度的中位數(shù);(計(jì)算結(jié)果保留兩位小數(shù))

(2)若按照分層抽樣從中隨機(jī)抽取8人,再從這8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),圓的方程為.以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線及圓的極坐標(biāo)方程;

(Ⅱ)若直線與圓交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個極值點(diǎn)(為自然對數(shù)的底數(shù)).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱的各條棱長均相等, 的中點(diǎn), 分別是線段和線段上的動點(diǎn)(含端點(diǎn)),且滿足.當(dāng)運(yùn)動時,下列結(jié)論中不正確的是( )

A. 平面平面 B. 三棱錐的體積為定值

C. 可能為直角三角形 D. 平面與平面所成的銳二面角范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為也為拋物線的焦點(diǎn),點(diǎn)在第一象限的交點(diǎn),且.

(I)求橢圓的方程;

(II)延長,交橢圓于點(diǎn),交拋物線于點(diǎn),求三角形的面積.

查看答案和解析>>

同步練習(xí)冊答案