函數(shù)M={y|y=ln(x2+1),x∈R},N={x|2x<2,x∈R},則M∩N=(  )
A.[0,+∞)B.[0,1)C.(1,+∞)D.(0,1]
M={y|y=ln(x2+1)}={y|y=ln(x2+1)≥ln1=0}={y|y≥0},
N={x|2x<2,x∈R}={x|x<1,x∈R},
所以M∩N={x|0≤x<1,x∈R}.
故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•婺城區(qū)模擬)對于函數(shù)f(x),若存在區(qū)間M=[a,b],使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的-個“好區(qū)間”.給出下列4個函數(shù):
①f(x)=sinx;
②f(x)=|2x-1|;
③f(x)=x3-3x;
④f(x)=lgx+l.
其中存在“好區(qū)間”的函數(shù)是
②③④
②③④
.  (填入相應(yīng)函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,O是坐標原點,設(shè)函數(shù)f(x)=k(x-2)+3的圖象為直線l,且l與x軸、y軸分別交于A、B兩點,給出下列四個命題:
①存在正實數(shù)m,使△AOB的面積為m的直線l僅有一條;
②存在正實數(shù)m,使△AOB的面積為m的直線l僅有兩條;
③存在正實數(shù)m,使△AOB的面積為m的直線l僅有三條;
④存在正實數(shù)m,使△AOB的面積為m的直線l僅有四條.
其中所有真命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正△ABC邊長為2a,點M是邊AB上自左至右的一個動點,過點M的直線l垂直與AB,設(shè)AM=x,△ABC內(nèi)位于直線l左側(cè)的陰影面積為y,y表示成x的函數(shù)表達式為
y=
3
2
x2(0<x≤a)
-
3
2
x2+2
3
ax-
3
a2(a<x≤2a)
y=
3
2
x2(0<x≤a)
-
3
2
x2+2
3
ax-
3
a2(a<x≤2a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)=
1
2
x2-mln
1+2x
+mx-2m
,m<0.
(I)當m=-1時,求函數(shù)y=f(x)-
x
3
的單調(diào)區(qū)間;
(II)已知m≤-
e
2
(其中e是自然對數(shù)的底數(shù)),若存在實數(shù)x0∈(-
1
2
,
e-1
2
]
,使f(x0)>e+1成立,證明:2m+e+l<0;
(III)證明:
n
k=1
8k-3
3k2
>ln
(n+1)(n+2)
2
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①已知直線m,l,平面α,β,若m⊥β,l?α,α∥β,則m⊥l;
a
 •
b
>0
,是
a
b
的夾角為銳角的充要條件;
③若f(x)在R上滿足f(x-2)=-f(x),則f(x)是以4為周期的周期函數(shù);
④y=sin(2x+
π
3
)的圖象的一個對稱中心是(
π
3
,0)
以上命題正確的是
①③④
①③④
(注:把你認為正確的命題的序號都填上)

查看答案和解析>>

同步練習冊答案