已知銳角△ABC中,sin(A+B)=
3
5
sin(A-B)=
1
5
,
求:tanB的值.
分析:把已知的兩等式分別利用兩角和與差的正弦函數(shù)公式化簡,將化簡后的兩等式組成方程組,兩方程相加相減可得出sinAcosB及cosAsinB的值,兩式相除并利用同角三角函數(shù)間的基本關系可得到tanA與tanB的關系,由三角形為銳角三角形,得到C的范圍,根據(jù)三角形的內(nèi)角和定理得出A+B的范圍,由sin(A+B)的值,利用同角三角函數(shù)間的基本關系求出cos(A+B)的值,再利用同角三角函數(shù)間的基本關系弦化切求出tan(A+B)的值,然后利用兩角和與差的正切函數(shù)公式化簡tan(A+B),將得出的tanA的關系式代入得到關于tanB的方程,求出方程的解即可得到tanB的值.
解答:解:由sin(A+B)=
3
5
,sin(A-B)=
1
5
得:
sinAcosB+cosAsinB=
3
5
sinAcosB-cosAsinB=
1
5
,
①+②得:2sinAcosB=
4
5
,即sinAcosB=
2
5
③,
①-②得:2cosAsinB=
2
5
,即cosAsinB=
1
5
④,
③÷④得:
tanA
tanB
=2
,即tanA=2tanB,
∵銳角△ABC,∴0<C<
π
2

π
2
<A+B<π
,又sin(A+B)=
3
5
,
∴cos(A+B)=-
1-sin2(A+B)
=-
4
5
,
tan(A+B)=-
3
4
,即
tanA+tanB
1-tanAtanB
=-
3
4
,
將tanA=2tanB代入上式并整理得:2tan2B-4tanB-1=0,
解得:tanB=
2+
6
2
tanB=
2-
6
2
(舍去),
則tanB=
2+
6
2
點評:此題考查了兩角和與差的正弦、正切函數(shù)公式,同角三角函數(shù)間的基本關系,熟練掌握公式及基本關系是解本題的關鍵,同時注意銳角三角形這個條件.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知銳角△ABC中,角A、B、C的對邊分別為a,b,c,a=
2
,b=
3
,B=
π
3

(Ⅰ)求角A的大小;
(Ⅱ)設函數(shù)f(x)=cosB•sin2x+cos2x,當x∈[-
π
4
,0]
時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角△ABC中的三個內(nèi)角分別為A,B,C.
(1)設
BC
CA
=
CA
AB
,求證:△ABC是等腰三角形;
(2)設向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t
,若sinA=
2
3
,求sin(
π
3
-B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•淮安模擬)已知銳角△ABC中內(nèi)角A,B,C的對邊分別為a,b,c,且c=6,向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t

(1)求C的大;
(2)若sinA=
1
3
,求sin(
π
3
-B)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A?>0,ω>0,-
π
2
<φ<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)已知銳角△ABC中的三個內(nèi)角分別為A,B,C,若有f(
A
π
)=
3
2
,邊BC=
7
,sin B=
21
7
求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角△ABC中,三個內(nèi)角為A,B,C,兩向量
p
=(2-2sinA,cosA+sinA),
q
=(sinA-cosA,1+sinA),若
p
q
是共線向量.
(1)求∠A的大;  
(2)求函數(shù)y=2sin2B+cos(
C-3B
2
)
取最大值時,∠B的大小.

查看答案和解析>>

同步練習冊答案