【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若直線過點(diǎn),求直線的極坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),求的最大值.

【答案】(1)(2)4

【解析】分析:(1)由直線過定點(diǎn),又直線過點(diǎn),可求出,直線(為參數(shù)),消去,得,由此可求直線的極坐標(biāo)方程;

(2)曲線的普通方程為,

所以曲線是以為圓心且經(jīng)過原點(diǎn)的圓,

因?yàn)橹本過圓心,所以,所以,

由此可求的最大值.

詳解:

(1)由直線過點(diǎn),注意

結(jié)合,得,

所以直線的參數(shù)方程為為參數(shù)),消去,得,

,代入得直線的極坐標(biāo)方程為.

(2)曲線的普通方程為,

所以曲線是以為圓心且經(jīng)過原點(diǎn)的圓,

因?yàn)橹本過圓心,所以,所以,

,

所以(當(dāng)且僅當(dāng)時(shí)取等號(hào)),

的最大值為4..

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)對(duì)的序列為, , , , , ,( ),, , ,…,則第70個(gè)數(shù)對(duì)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)在點(diǎn)(1,0)處的切線方程;

(II)設(shè)實(shí)數(shù)k使得f(x)< kx恒成立,求k的范圍;

(III)設(shè)函數(shù),求函數(shù)h(x)在區(qū)間上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點(diǎn)D,D1分別為AC,A1C1上的點(diǎn).

(1)當(dāng)的值等于何值時(shí),BC1∥平面AB1D1;

(2)若平面BC1D∥平面AB1D1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)產(chǎn)品件的總成本(萬元).已知產(chǎn)品單價(jià)(萬元)與產(chǎn)品件數(shù)滿足,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬元.

(1)設(shè)產(chǎn)量為件時(shí),總利潤為(萬元),求的解析式;

(2)產(chǎn)量定為多少時(shí)總利潤(萬元)最大?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖l,在正方形ABCD中,AB=2,E是AB邊的中點(diǎn),F(xiàn)是BC邊上的一點(diǎn),對(duì)角線AC分別交DE、DF于M、N兩點(diǎn).將ADAE,CDCF折起,使A、C重合于A點(diǎn),構(gòu)成如圖2所示的幾何體.
(I)求證:A′D⊥面A′EF;
(Ⅱ)試探究:在圖1中,F(xiàn)在什么位置時(shí),能使折起后的幾何體中EF∥平面AMN,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為4,直線被橢圓截得的線段長為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓的右頂點(diǎn)作互相垂直的兩條直線分別交橢圓兩點(diǎn)(點(diǎn)不同于橢圓的右頂點(diǎn)),證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的邊AB=2,BC=1,以A為坐標(biāo)原點(diǎn),AB,AD邊分別在x軸、y軸的正半軸上,建立直角坐標(biāo)系。將矩形折疊,使A點(diǎn)落在線段DC上,重新記為點(diǎn)

(1)當(dāng)點(diǎn)坐標(biāo)為(1,1)時(shí),求折痕所在直線方程.

(2)若折痕所在直線的斜率為k,試求折痕所在直線的方程;

(3)當(dāng)時(shí),設(shè)折痕所在直線與軸交于點(diǎn)E,與軸交于點(diǎn)F,將沿折痕EF旋轉(zhuǎn).使二面角的大小為,設(shè)三棱錐的外接球表面積為,試求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=3sin(2x+ )的圖象向右平移 個(gè)單位長度,所得圖象對(duì)應(yīng)的函數(shù)(
A.在區(qū)間[ , ]上單調(diào)遞減
B.在區(qū)間[ ]上單調(diào)遞增
C.在區(qū)間[﹣ , ]上單調(diào)遞減
D.在區(qū)間[﹣ , ]上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案