函數(shù)y=sin(
12
x+3)
的最小正周期是
 
分析:根據(jù)函數(shù)y=Asin(ωx+φ)找出已知函數(shù)的ω的值,代入周期公式即可求出最小正周期.
解答:解:∵ω=
1
2
,
∴函數(shù)的最小正周期T=
1
2
=4π.
故答案為:4π
點(diǎn)評(píng):此題考查了三角函數(shù)的周期性及其求法,熟練掌握周期公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列區(qū)間中,函數(shù)y=sin(2x+
π
3
)單調(diào)遞增的是( 。
A、(0,
π
2
B、(
π
2
,
2
C、(-
12
,
π
12
D、(
π
12
,
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx-cosωx(ω>0)
的圖象與直線y=2的兩個(gè)相鄰交點(diǎn)的距離等于π,則為得到函數(shù)y=f(x)的圖象可以把函數(shù)y=sinωx的圖象上所有的點(diǎn)( 。
A、向右平移
π
12
,再將所得圖象上所有的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?倍
B、向右平移
π
6
,再將所得圖象上所有的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?span id="273thxv" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
1
2
C、向左平移
π
12
,再將所得圖象上所有的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?span id="jqymh8l" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
1
2
D、向左平移
π
6
,再將所得圖象上所有的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)存在實(shí)數(shù)α,使sinαcosα=1;
(2)存在實(shí)數(shù)α,使sinα+cosα=
3
2
;
(3)函數(shù)y=sin(
2
-2x)
是偶函數(shù);
(4)方程x=
π
6
是函數(shù)y=cos(x-
π
6
)
圖象的一條對(duì)稱軸方程;
(5)若α,β是第一象限角,且α>β,則tanα>tanβ.
(6)把函數(shù)y=cos(2x+
π
12
)
的圖象向右平移
π
12
個(gè)單位,所得的函數(shù)解析式為y=cos(2x-
π
12
)

其中正確命題的序號(hào)是
 
.(注:把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(x-
π
3
)
的圖象先向左平移
π
6
,然后將所得圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="vjmkyaw" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
1
2
(縱坐標(biāo)不變),則所得到的圖象對(duì)應(yīng)的函數(shù)解析式為(  )
A、y=-cos2x
B、y=sin2x
C、y=sin(2x-
π
6
)
D、y=sin4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定函數(shù)①y=x -
1
2
,②y=2 x2-3x+3,③y=log 
1
2
|1-x|,④y=sin
πx
2
,其中在(0,1)上單調(diào)遞減的個(gè)數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案