分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{y-x-1≤0}\\{x≤1}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x=1}\\{y-x-1=0}\end{array}\right.$,解得A(1,2),
化目標函數(shù)z=2x+3y為$y=-\frac{2}{3}x+\frac{2}{3}z$,
由圖可知,當直線$y=-\frac{2}{3}x+\frac{2}{3}z$過A時,直線在y軸上的截距最大,z有最大值為8.
故答案為:8.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
x | 0 | 1 | 2 |
y | a | $\frac{20}{3}$ | $\frac{40}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 8 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $4\sqrt{2}$ | C. | 6 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0≥2,x02-2x0-2<0 | B. | ?x0<2,x02-2x0-2<0 | ||
C. | ?x<2,x2-2x-2≤0 | D. | ?x≥2,x2-2x-2≤0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com