9.甲、乙、丙的投籃命中率分別為$\frac{1}{2}$,$\frac{2}{3}$,$\frac{4}{5}$.三人各投籃一次,假設(shè)三人投籃相互獨(dú)立,則至少有一人命中的概率是$\frac{29}{30}$.

分析 利用相互獨(dú)立事件的概率乘法公式求出都沒(méi)有投中的概率,再用1減去此概率,即為所求.

解答 解:甲、乙、丙的投籃命中率分別為$\frac{1}{2}$,$\frac{2}{3}$,$\frac{4}{5}$,三人各投籃一次,三人投籃相互獨(dú)立,
則都沒(méi)有投中的概率為(1-$\frac{1}{2}$)•(1-$\frac{2}{3}$)•(1-$\frac{4}{5}$)=$\frac{1}{30}$,
∴至少有一人命中的概率是1-$\frac{1}{30}$=$\frac{29}{30}$,
故答案為:$\frac{29}{30}$.

點(diǎn)評(píng) 本題主要考查相互獨(dú)立事件的概率乘法公式的應(yīng)用,事件和它的對(duì)立事件概率間的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知復(fù)數(shù)z滿足(1-i)z=2+2i(i為虛數(shù)單位),則|z|=( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某高校從4名男大學(xué)生志愿者和3名女大學(xué)生志愿者中選3名派到3所學(xué)校支教(每所學(xué)校1名志愿者),要求這3名志愿者中男、女大學(xué)生都有,則不同的選派方案共有( 。
A.210種B.180種C.150種D.120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知關(guān)于x的不等式ax2+bx+2>0的解范圍是-$\frac{2}{3}$<x<1,求不等式bx2+ax+2≥0的解范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}中,${a_1}=\frac{3}{4}$,${a_{n+1}}=\frac{1}{{2-{a_n}}}$(n∈N*).
(1)求證:數(shù)列$\{\frac{1}{{{a_n}-1}}\}$是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}+{a_n}=1(n∈{N^*})$,Sn=b1b2+b2b3+…+bnbn+1,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,輸出的T的值為( 。
A.12B.17C.20D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知拋物線C:x2=2py(p>0),圓Q:x2+(y-3)2=8,過(guò)拋物線C的焦點(diǎn)F且與x軸平行的直線與C交于P1,P2兩點(diǎn),且|P1P2|=4.
(1)證明:拋物線C與圓Q相切;
(2)直線l過(guò)F且與拋物線C和圓Q依次交于M,A,B,N,且直線l的斜率k∈(0,1),求$\frac{|AB|}{|MN|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,若$\frac{1}{sinA}$+$\frac{2}{sinB}$=3($\frac{1}{tanA}$+$\frac{1}{tanB}$),則cosC的最小值為$\frac{2\sqrt{10}-2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,a1+a2=6,a3+a4=14,若a1,ak,Sk+2成等比數(shù)列,則正整數(shù)k=( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案