分析 設(shè)圓I與△PF1F2的三邊F1F2、PF1、PF2分別相切于點(diǎn)E、F、G,連接IE、IF、IG,可得△IF1F2,△IPF1,△IPF2可看作三個高相等且均為圓I半徑r的三角形.利用三角形面積公式,代入已知式S${\;}_{△IP{F_1}}}$-S${\;}_{△IP{F_2}}}$=$\frac{1}{2}$S${\;}_{△I{F_1}{F_2}}}$,化簡可得|PF1|-|PF2|=$\frac{1}{2}$|F1F2|,再結(jié)合雙曲線的定義與離心率的公式,可求出此雙曲線的離心率.
解答 解:如圖,設(shè)圓I與△PF1F2的三邊F1F2、PF1、PF2分別相切于點(diǎn)E、F、G,連接IE、IF、IG,
則IE⊥F1F2,IF⊥PF1,IG⊥PF2,它們分別是
△IF1F2,△IPF1,△IPF2的高,
∴S${\;}_{△IP{F_1}}}$=$\frac{1}{2}$×|PF1|×|IF|=$\frac{r}{2}$|PF1|,
S${\;}_{△IP{F_2}}}$=$\frac{1}{2}$×|PF2|×|IG|=$\frac{r}{2}$|PF2|
S${\;}_{△I{F_1}{F_2}}}$=$\frac{1}{2}$×|F1F2|×|IE|=$\frac{r}{2}$|F1F2|,其中r是△PF1F2的內(nèi)切圓的半徑.
∵S${\;}_{△IP{F_1}}}$-S${\;}_{△IP{F_2}}}$=$\frac{1}{2}$S${\;}_{△I{F_1}{F_2}}}$,
∴$\frac{r}{2}$|PF1|-$\frac{r}{2}$|PF2|+$\frac{r}{4}$|F1F2|
兩邊約去$\frac{r}{2}$得:|PF1|-|PF2|=$\frac{1}{2}$|F1F2|
根據(jù)雙曲線定義,得|PF1|-|PF2|=2a,|F1F2|=2c
∴2a=c⇒離心率為e=$\frac{c}{a}$=2,
故答案為:2.
點(diǎn)評 本題將三角形的內(nèi)切圓放入到雙曲線當(dāng)中,用來求雙曲線的離心率,著重考查了雙曲線的基本性質(zhì)、三角形內(nèi)切圓的性質(zhì)和面積計算公式等知識點(diǎn),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4、8 | B. | 3、9 | C. | 2、10 | D. | 1、11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2016+ln8 | B. | 4032+ln4 | C. | 2016+21n2 | D. | 4032+ln2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=18 B=$\frac{π}{6}$ A=$\frac{2π}{3}$ | B. | a=60 c=48 C=$\frac{2π}{3}$ | ||
C. | a=3 b=6 A=$\frac{π}{6}$ | D. | a=14 b=15 A=$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com