【題目】函數(shù)f(x)= ﹣lg(x﹣1)的定義域是(
A.[2,+∞)
B.(﹣∞,2)
C.(1,2]
D.(1,+∞)

【答案】C
【解析】解:要使函數(shù)f(x)= ﹣lg(x﹣1)有意義則
解得1<x≤2
∴函數(shù)f(x)= ﹣lg(x﹣1)的定義域是(1,2]
故選C
【考點精析】解答此題的關鍵在于理解函數(shù)的定義域及其求法的相關知識,掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))

(Ⅰ)試討論函數(shù)的零點個數(shù);

(Ⅱ)證明:當時,總有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點在以為直徑的圓上, 垂直與圓所在平面, 的垂心.

(1)求證:平面平面;

(2)若,點在線段上,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=m2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠,則m+n的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.

(1)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;

2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求的值;

(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,點D是BC的中點.

(1)求證:A1B∥平面ADC1;
(2)求平面ADC1與ABA1所成二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中,a1= ,且前n項的算術平均數(shù)等于第n項的2n﹣1倍(n∈N*).
(1)寫出此數(shù)列的前5項;
(2)歸納猜想{an}的通項公式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=a3x+1 , g(x)=( 5x2 , 其中a>0,且a≠1.
(1)若0<a<1,求滿足f(x)<1的x的取值范圍;
(2)求關于x的不等式f(x)≥g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列中,已知對任意都成立,數(shù)列的前項和為.(這里均為實數(shù))

(1)若是等差數(shù)列,求的值;

(2)若,求;

(3)是否存在實數(shù),使數(shù)列是公比不為的等比數(shù)列,且任意相鄰三項按某順序排列后成等差數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案