已知函數(shù)f(n)=log(n+1)(n+2)(n∈N*),若存在正整數(shù)k滿足:f(1)•f(2)•f(3)•…•f(n)=k,那么我們把k叫做關于n的“對整數(shù)”,則當n∈[1,10]時,“對整數(shù)”共有( 。
分析:由題意,f(x)=log(x+1) (x+2)=
lg(x+2)
lg(x+1)
,再計算f(1)f(2)f(3)…f(x)=log2(x+2),根據(jù)1≤x≤100,得log23≤log2(x+2)≤log212,從而可得“對整數(shù)”的個數(shù).
解答:解:由題意,根據(jù)換底公式得,f(x)=log(x+1) (x+2)=
lg(x+2)
lg(x+1)
,
所以k=f(1)f(2)f(3)…f(x)=
lg3
lg2
lg4
lg3
lg5
lg4
lg(x+2)
lg(x+1)
=
lg(x+2)
lg2
=log2(x+2).
∵1≤x≤10,∴l(xiāng)og23≤log2(x+2)≤log212
整數(shù)有l(wèi)og24,log28,即2,3,兩個整數(shù).
故選:B.
點評:本題的考點排列、組合的實際應用,主要考查新定義,考查對數(shù)運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xn,其中n∈Z,n≥2.曲線y=f(x)在點P(x0,f(x0))(x0>0)處的切線為l,l與x軸交于點Q,與y軸交于點R,則
|PQ|
|PR|
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx.其中常數(shù)a>0.
(1)當a>2時,求函數(shù)f(x)的單調遞增區(qū)間;
(2)當a=4時,給出兩類直線:6x+y+m=0與3x-y+n=0,其中m,n為常數(shù),判斷這兩類直線中是否存在y=f(x)的切線,若存在,求出相應的m或n的值,若不存在,說明理由.
(3)設定義在D上的函數(shù)y=h(x)在點P(x0,h(x0))處的切線方程為l:y=g(x),當x≠x0時,若
h(x)-g(x)x-x0
>0
在D內恒成立,則稱P為函數(shù)y=h(x)的“類對稱點”,當a=4時,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x(x-
12
)的定義域為(n,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個數(shù)記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達式;
(3)若對于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實數(shù)l的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2bx的圖象在點A(0,f(0))處的切線L與直線x-y+3=0平行,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2013的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2013的值為( 。

查看答案和解析>>

同步練習冊答案