分析 (1)由橢圓的離心率得出a、c的關系,再由a、b、c的平方關系,
把點Q的坐標代入橢圓C的方程,求出b、a的值,寫出橢圓C的方程;
(2)討論直線PN的斜率k不存在和斜率k存在時,分別計算四邊形OPMN的面積S,
即可得出四邊形OPMN的面積為定值.
解答 解:(1)由橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,
得${e^2}=\frac{c^2}{a^2}=\frac{1}{2}$,
∴$\frac{{a}^{2}{-b}^{2}}{{a}^{2}}$=$\frac{1}{2}$
∴$\frac{b^2}{a^2}=\frac{1}{2}$,
∴a2=2b2;
將Q代入橢圓C的方程,得$\frac{^{2}}{{2b}^{2}}$+$\frac{{2b}^{2}}{^{4}}$=1,
解得b2=4,
∴a2=8,
∴橢圓C的方程為$\frac{x^2}{8}+\frac{y^2}{4}=1$;
(2)當直線PN的斜率k不存在時,PN方程為:$x=\sqrt{2}$或$x=-\sqrt{2}$,
從而有$|{PN}|=2\sqrt{3}$,
所以四邊形OPMN的面積為
$S=\frac{1}{2}|{PN}|•|{OM}|=\frac{1}{2}×2\sqrt{3}×2\sqrt{2}=2\sqrt{6}$;
當直線PN的斜率k存在時,
設直線PN方程為:y=kx+m(m≠0),P(x1,y1),N(x2,y2);
將PN的方程代入C整理得:(1+2k2)x2+4kmx+2m2-8=0,
所以${x_1}+{x_2}=\frac{-4km}{{1+2{k^2}}}$,${x_1}•{x_2}=\frac{{2{m^2}-8}}{{1+2{k^2}}}$,
${y_1}+{y_2}=k({{x_1}+{x_2}})+2m=\frac{2m}{{1+2{k^2}}}$,
由$\overrightarrow{OM}=\overrightarrow{OP}+\overrightarrow{ON}$得:$M({\frac{-4km}{{1+2{k^2}}},\frac{2m}{{1+2{k^2}}}})$,
將M點坐標代入橢圓C方程得:m2=1+2k2;
點O到直線PN的距離為$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$,
$|{PN}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|$,
四邊形OPMN的面積為
$S=d•|{PN}|=|m|•|{{x_1}-{x_2}}|=\sqrt{1+2{k^2}}•|{{x_1}-{x_2}}|=\sqrt{16{k^2}-8{m^2}+32}=2\sqrt{6}$.
綜上,平行四邊形OPMN的面積S為定值$2\sqrt{6}$.
點評 本題考查了直線與圓錐曲線的綜合應用問題,也考查了分類討論思想的應用問題,考查了轉化法與方程組以及根與系數(shù)關系的應用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若m∥α,n∥β,m⊥n,則α⊥β | B. | 若m∥α,n⊥β,m∥n,則α∥β | ||
C. | 若m⊥α,n∥β,m⊥n,則α∥β | D. | 若m⊥α,n⊥β,m∥n,則α∥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $\frac{7}{2}$ | C. | $\frac{97}{28}$ | D. | $\frac{64}{14}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$) | B. | [$\frac{1+ln3}{3}$,$\frac{1+ln2}{2}$) | C. | (-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$] | D. | (-1,-$\frac{1+ln3}{3}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com