5.如圖,A,B,C,D四點(diǎn)共圓,BC,AD的延長(zhǎng)線交于點(diǎn)E,點(diǎn)F在BA的延長(zhǎng)線上,
(1)若$\frac{EC}{EB}=\frac{1}{4},\frac{ED}{EA}=\frac{1}{2},求\frac{DC}{AB}$的值;
(2)若EF2=FA•FB,證明:EF∥CD.

分析 (1)推導(dǎo)出△EDC∽△EBA,由此能求出$\frac{DC}{AB}$的值.
(2)推導(dǎo)出△FAE∽△FEB,從而∠FEA=∠EBF,再由四點(diǎn)共圓,能證明EF∥CD.

解答 解:(1)∵A、B、C、D四點(diǎn)共圓,
∴∠ECD=∠EAB,∠EDC=∠B,
∴△EDC∽△EBA,∴$\frac{ED}{EB}=\frac{EC}{EA}=\frac{DC}{AB}$,
$\frac{ED}{EB}•\frac{EC}{EA}$=$(\frac{DC}{AB})^{2}$=$\frac{1}{8}$,
∴$\frac{DC}{AB}$=$\frac{\sqrt{2}}{4}$.
證明:(2)∵EF2=FA•FB,∴$\frac{EF}{FA}=\frac{FB}{EF}$,
∵∠EFA=∠BFE,
∴△FAE∽△FEB,
∴∠FEA=∠EBF,
∵A、B、C、D四點(diǎn)共圓,∠EDC=∠EBF,
∴∠FEA=∠EDC,∴EF∥CD.

點(diǎn)評(píng) 本題考查兩線段比值的求法,考查兩直線平行的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的簡(jiǎn)單性質(zhì)、三角形相似的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,一渡船自岸邊A處出發(fā),與岸邊成70°方向以30kmh的速度航行,由于河水流速的影響,它實(shí)際航行的方向與河岸成120°,試求水流速度(水流方向與河岸平行,精確到0.1km/h

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若P點(diǎn)是以F1(-3,0)、F2(3,0)為焦點(diǎn),實(shí)軸長(zhǎng)為4的雙曲線與圓x2+y2=9的一個(gè)交點(diǎn),則|PF1|+|PF2|=( 。
A.$\sqrt{13}$B.6C.2$\sqrt{14}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為A,經(jīng)過(guò)原點(diǎn)的直線l交橢圓C于P、Q兩點(diǎn),若|PQ|=a,AP⊥PQ,則橢圓C的離心率為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1與$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率分別為e1,e2,且e1+e2=$\sqrt{3}$,則e1e2=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,左、右焦點(diǎn)分別為F1、F2,點(diǎn)$P(2,\sqrt{3})$,且F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)A(2,0)且斜率為k的直線l與橢圓C交于D、E兩點(diǎn),點(diǎn)F2為橢圓的右焦點(diǎn),求證:直線DF2與直線EF2的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過(guò)點(diǎn)$({2\sqrt{2},2})$,且離心率為$\frac{{\sqrt{2}}}{2}$,F(xiàn)1,F(xiàn)2是橢圓E的左,右焦點(diǎn)
(1)求橢圓E的方程;
(2)若點(diǎn)A,B是橢圓E上關(guān)于y軸對(duì)稱(chēng)兩點(diǎn)(A,B不是長(zhǎng)軸的端點(diǎn)),點(diǎn)P是橢圓E上異于A,B的一點(diǎn),且直線PA,PB分別交y軸于點(diǎn)M,N,求證:直線MF1與直線NF2的交點(diǎn)G在定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率為$\frac{1}{2}$,點(diǎn)F1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),以原點(diǎn)為圓心,橢圓C的短半軸為半徑的圓與直線x-y+$\sqrt{6}$=0相切.
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)F2的直線l與橢圓C相交于M,N兩點(diǎn),求使△F1MN面積最大時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知等差數(shù)列{an}的公差為-3,且a3是a1和a4的等比中項(xiàng),則通項(xiàng)an=-3n+15,數(shù)列{an}的前n項(xiàng)和Sn的最大值為30.

查看答案和解析>>

同步練習(xí)冊(cè)答案