【題目】某中學為了組建一支業(yè)余足球隊,在高一年級隨機選取50名男生測量身高,發(fā)現(xiàn)被測男生的身高全部在之間,將測量結(jié)果按如下方式分成六組:第1,第2,第6,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.

1)若學校要從中選1名男生擔任足球隊長,求被選取的男生恰好在第5組或第6組的概率;

2)試估計該校高一年級全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)與中位數(shù);

3)現(xiàn)在從第5與第6組男生中選取兩名同學擔任守門員,求選取的兩人中最多有1名男生來自第5組的概率.

【答案】(1)0.12;(2)平均數(shù)為168.72,中位數(shù)為168.25;(3).

【解析】

1)由直方圖可得,被選取的男生恰好在第5組或第6組的概率;(2)每個矩形的中點橫坐標與該矩形的縱坐標、組距相乘后求和可得平均值;直方圖左右兩邊面積相等處橫坐標表示中位數(shù);(3)利用列舉法,從第5與第6組男生中選取兩名同學擔任守門員共有15種情況,其中選取的兩人中最多有1名男生來自第5組的情況有9種,由古典概型概率公式可得結(jié)果.

1)被選取的男生恰好在第5組或第6組的概率

.

2)全體男生身高的平均數(shù)為 .

設全體男生身高的中位數(shù)為,因為第1對應的頻率為0.20,第2對應的頻率為0.28,所以,則,解得.

3)第5組有人,記為,,,,同理第6組有2人記為,

所有的情況為、、、、、、、、,共15種,

選取的兩人中最多有1名男生來自第5組的有、、、、、、9種,

所以所求概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】正方形沿對角線折成直二面角,下列結(jié)論:①異面直線所成的角為;②;③是等邊三角形;④二面角的平面角正切值是;其中正確結(jié)論是______.(寫出你認為正確的所有結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校在平面圖為矩形的操場ABCD內(nèi)進行體操表演,其中AB40,BC15,OAB上一點,且BO10,線段OCOD、MN為表演隊列所在位置(M、N分別在線段ODOC上),OCD內(nèi)的點P為領隊位置,且POC、OD的距離分別為、,記OMd,我們知道當OMN面積最小時觀賞效果最好.

1)當d為何值時,P為隊列MN的中點;

2)怎樣安排M的位置才能使觀賞效果最好?求出此時OMN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別是雙曲線的左右焦點,過的直線與雙曲線的左右兩支分別交于兩點.若為等邊三角形,則的面積為(

A. 8 B. C. D. 16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電子商務平臺的管理員隨機抽取了1000位上網(wǎng)購物者,并對其年齡(在10歲到69歲之間)進行了調(diào)查,統(tǒng)計情況如下表所示.

年齡

人數(shù)

100

150

200

50

已知,,三個年齡段的上網(wǎng)購物的人數(shù)依次構(gòu)成遞減的等比數(shù)列.

(1)求的值;

(2)若將年齡在內(nèi)的上網(wǎng)購物者定義為“消費主力軍”,其他年齡段內(nèi)的上網(wǎng)購物者定義為“消費潛力軍”.現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取5人,再從這5人中抽取2人,求這2人中至少有一人是消費潛力軍的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)求使方程存在兩個實數(shù)解時,的取值范圍;

2)設,函數(shù),.若對任意,總存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 是正方形, 平面 , , 分別是 , , 的中點.

1)求證:平面平面

2)在線段上確定一點,使平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉(zhuǎn)一周所成幾何體的表面積和體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司有4家直營店, , ,現(xiàn)需將6箱貨物運送至直營店進行銷售,各直營店出售該貨物以往所得利潤統(tǒng)計如下表所示根據(jù)此表,該公司獲得最大總利潤的運送方式有

A. B. C. D.

查看答案和解析>>

同步練習冊答案