【題目】正方形沿對(duì)角線折成直二面角,下列結(jié)論:①異面直線與所成的角為;②;③是等邊三角形;④二面角的平面角正切值是;其中正確結(jié)論是______.(寫(xiě)出你認(rèn)為正確的所有結(jié)論的序號(hào))
【答案】①②③④
【解析】
作出翻折后的空間圖形,取為的中點(diǎn),根據(jù)面面垂直的性質(zhì)有平面,然后對(duì)各個(gè)選項(xiàng)進(jìn)行分析計(jì)算,從而判斷其真假.
設(shè)正方形的邊長(zhǎng)為2,取的中點(diǎn)為,連結(jié).
由,有。
又因?yàn)?/span>直二面角,所以 平面.
在直角三角形中,.則.
對(duì)①,取的中點(diǎn)分別為,連結(jié).
則∥且=1,∥且=1.
所以異面直線與所成的角為,
直角三角形中,,所以為等邊三角形.
則,所以①正確.
對(duì)②,由,有,
則可以得到平面,又平面。
所以,所以②正確.
對(duì)③,由題意可知,是等邊三角形.
所以③正確.
對(duì)④,由∥,則,
又,則,所以為二面角的平面角.
在直角三角形中,,所以所以④正確.
故答案為:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).
(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);
(Ⅱ)求證:直線與橢圓相切;
(Ⅲ)判斷是否為定值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:
①“若,則”的逆否命題為真命題
②“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件
③若為假命題,則,均為假命題
④對(duì)于命題:,,則為:,
其中真命題的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果數(shù)列對(duì)于任意,都有,其中為常數(shù),則稱(chēng)數(shù)列是“間等差數(shù)列”,為“間公差”.若數(shù)列滿足,,.
(1)求證:數(shù)列是“間等差數(shù)列”,并求間公差;
(2)設(shè)為數(shù)列的前n項(xiàng)和,若的最小值為-153,求實(shí)數(shù)的取值范圍;
(3)類(lèi)似地:非零數(shù)列對(duì)于任意,都有,其中為常數(shù),則稱(chēng)數(shù)列是“間等比數(shù)列”,為“間公比”.已知數(shù)列中,滿足,,,試問(wèn)數(shù)列是否為“間等比數(shù)列”,若是,求最大的整數(shù)使得對(duì)于任意,都有;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)袋子中有個(gè)紅球,個(gè)白球,若從中任取個(gè)球,則這個(gè)球中有白球的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)交軸于兩點(diǎn)(不重合),交軸于點(diǎn). 圓過(guò)三點(diǎn).下列說(shuō)法正確的是( )
① 圓心在直線上;
② 的取值范圍是;
③ 圓半徑的最小值為;
④ 存在定點(diǎn),使得圓恒過(guò)點(diǎn).
A. ①②③B. ①③④C. ②③D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,定義橢圓上的點(diǎn)的“伴隨點(diǎn)”為.
(1)求橢圓上的點(diǎn)的“伴隨點(diǎn)”的軌跡方程;
(2)如果橢圓上的點(diǎn)的“伴隨點(diǎn)”為,對(duì)于橢圓上的任意點(diǎn)及它的“伴隨點(diǎn)”,求的取值范圍;
(3)當(dāng), 時(shí),直線交橢圓于, 兩點(diǎn),若點(diǎn), 的“伴隨點(diǎn)”分別是, ,且以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了組建一支業(yè)余足球隊(duì),在高一年級(jí)隨機(jī)選取50名男生測(cè)量身高,發(fā)現(xiàn)被測(cè)男生的身高全部在到之間,將測(cè)量結(jié)果按如下方式分成六組:第1組,第2組,…,第6組,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.
(1)若學(xué)校要從中選1名男生擔(dān)任足球隊(duì)長(zhǎng),求被選取的男生恰好在第5組或第6組的概率;
(2)試估計(jì)該校高一年級(jí)全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)與中位數(shù);
(3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門(mén)員,求選取的兩人中最多有1名男生來(lái)自第5組的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com