9.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{t}{2}{x^2}+kx(t>0,k>0)$在x=a,x=b處分別取得極大值與極小值,且a,b,-2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則t的值等于(  )
A.5B.4C.3D.1

分析 求出b>a>0,可得:a,b,-2這三個(gè)數(shù)可適當(dāng)排序?yàn)?2,a,b或b,a,-2后成等差數(shù)列,也可適當(dāng)排序?yàn)閍,-2,b或b,-2,a后成等比數(shù)列,即可得出.

解答 解:函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{t}{2}{x^2}+kx(t>0,k>0)$,
f′(x)=x2-tx+k,
若f(x)在x=a,x=b處分別取得極大值與極小值,
則a,b是方程f′(x)=0的根,
故a+b=t>0,ab=k>0,a<b,
故b>a>0,可得:a,b,-2這三個(gè)數(shù)可適當(dāng)排序?yàn)?2,a,b或b,a,-2后成等差數(shù)列,
也可適當(dāng)排序?yàn)閍,-2,b或b,-2,a后成等比數(shù)列,
∴2a=b-2,(-2)2=ab,
聯(lián)立解得b=4,a=1,
∴a+b=5=t,
故選:A.

點(diǎn)評(píng) 題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)數(shù)集M=$\{x\left|{m≤x≤m+\frac{7}{10}}\right.\}$,N=$\{x\left|{n-\frac{2}{5}≤x≤n}\right.\}$且集合M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“長度”,那么集合M∩N的“長度”的最小值是$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合$A=\{x|\frac{x-1}{x+2}≤0\},B=\{x|y=lg(-{x^2}+4x+5)\}$,則A∩(∁RB)=( 。
A.(-2,-1]B.[-2,-1]C.(-1,1]D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=x2,g(x)=($\frac{1}{2}$)x-m,若對(duì)任意x1∈[-1,3],總存x2∈[0,2],在使得f(x1)≥g(x2)成立,則實(shí)數(shù)m的取值范圍是m≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a>π>b>1>c>0,且x=a${\;}^{\frac{1}{π}}}$,y=logπb,z=logcπ,則(  )
A.x>y>zB.x>z>yC.y>x>zD.y>z>x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等差數(shù)列{an}中,首項(xiàng)a1=0,公差d≠0,a1+a2+…+a7=ak,則k=( 。
A.10B.20C.23D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中在區(qū)間[-1,+∞)上為增函數(shù)的是( 。
A.y=$\sqrt{x+1}$B.y=(x-1)2C.y=|x-2|D.y=-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.△ABC的三邊a,b,c所對(duì)的角分別為A,B,C.若A:B=1:2,sinC=1,則a:b:c=(  )
A.1:2:1B.1:2:3C.2:$\sqrt{3}$:1D.1:$\sqrt{3}$:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC的內(nèi)角A,B,C所對(duì)的邊為a,b,c,已知$a=\sqrt{3}+1,b=\sqrt{3}-1$,C=120°,則c=(  )
A.$\sqrt{10}$B.$\sqrt{6}$C.3D.$2\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案