【題目】;②;③為常數(shù))這個(gè)條件中選擇個(gè)條件,補(bǔ)全下列試題后完成解答,設(shè)等差數(shù)列的前項(xiàng)和為,若數(shù)列的各項(xiàng)均為正整數(shù),且滿足公差,____________.

1)求數(shù)列的通項(xiàng)公式;

2)令,求數(shù)列的前項(xiàng)的和.

【答案】條件選擇見(jiàn)解析;(1;(2.

【解析】

1)選①,根據(jù)條件得出,由,,可求得的值,進(jìn)而可求得等差數(shù)列的通項(xiàng)公式;

選②,由得出,由,,可求得的值,進(jìn)而可求得等差數(shù)列的通項(xiàng)公式;

選③,由可求得數(shù)列的通項(xiàng)公式,求得數(shù)列的公差,由該數(shù)列為等差數(shù)列求得的值,進(jìn)而可得出數(shù)列的通項(xiàng)公式;

2)求得,然后利用分組求和法可求得數(shù)列的前項(xiàng)和.

1)由等差數(shù)列各項(xiàng)均為正整數(shù),且公差,知,.

選①,由,由,得;

選②,由,由,,得,,;

選③,由,

,則,且,

,且數(shù)列是等差數(shù)列,則,得;

2)由(1)知,

,

所以的前項(xiàng)的和為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:,,,其中為實(shí)數(shù),為正整數(shù).

)證明:對(duì)任意的實(shí)數(shù),數(shù)列不是等比數(shù)列;

)證明:當(dāng)時(shí),數(shù)列是等比數(shù)列;

)設(shè)為數(shù)列的前項(xiàng)和,是否存在實(shí)數(shù),使得對(duì)任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,且直線l經(jīng)過(guò)曲線C的左焦點(diǎn)F.

(1)求直線l的普通方程;

(2)設(shè)曲線C的內(nèi)接矩形的周長(zhǎng)為L(zhǎng),求L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)不同的單位向量之間滿足關(guān)系:,其中

1)若,求的解析式;

2能否和垂直?能否和平行?若不能,則說(shuō)明理由;若能,則求出對(duì)應(yīng)的k值;

3)求夾角的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】低密度脂蛋白是一種運(yùn)載膽固醇進(jìn)入外周組織細(xì)胞的脂蛋白顆粒,可被氧化成氧化低密度脂蛋白,當(dāng)?shù)兔芏戎鞍,尤其是氧化修飾的低密度脂蛋白過(guò)量時(shí),它攜帶的膽固醇便積存在動(dòng)脈壁上,久了容易引起動(dòng)脈硬化,因此低密度脂蛋白被稱為“壞的膽固醇”.為了調(diào)查某地中年人的低密度脂蛋白濃度是否與肥胖有關(guān),隨機(jī)調(diào)查該地100名中年人,得到2×2列聯(lián)表如下:

肥胖

不肥胖

總計(jì)

低密度脂蛋白不高于

12

63

75

低密度脂蛋白高于

8

17

25

總計(jì)

20

80

100

由此得出的正確結(jié)論是( )

A.10%的把握認(rèn)為“該地中年人的低密度脂蛋白濃度與肥胖有關(guān)”

B.10%的把握認(rèn)為“該地中年人的低密度脂蛋白濃度與肥胖無(wú)關(guān)”

C.90%的把握認(rèn)為“該地中年人的低密度脂蛋白濃度與肥胖有關(guān)”

D.90%的把握認(rèn)為“該地中年人的低密度脂蛋白濃度與肥胖無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在斜三棱柱中,AB=1,AC=2,ABAC底面ABC.

1)求直線與平面所成角的正弦值;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正三棱錐的高為6,側(cè)面與底面成的二面角,則其內(nèi)切球(與四個(gè)面都相切)的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正三棱錐的高為6,內(nèi)切球(與四個(gè)面都相切)表面積為,則其底面邊長(zhǎng)為( )

A. 18 B. 12 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案