分析 若已知三角形的兩邊和其中一邊的對角,要求該三角形的形狀大小唯一確定,則該三角形是直角三角形或鈍角三角形,根據(jù)勾股定理確定BC的長,再進一步確定鈍角三角形時的取值范圍.
解答 解:已知在△ABC中A=45°,b=1,要使△ABC的解有且僅有一個,即三角形形狀唯一,
有兩種情況:①△ABC為直角三角形;②△ABC為鈍角三角形;
若△ABC為直角三角形,∠B=90°,可得c⊥a,此時a=cos45°×1=$\frac{\sqrt{2}}{2}$;
若三角形為鈍角三角形;可得a≥1;
綜上:a=$\frac{\sqrt{2}}{2}$或a≥1;
故答案為:a≥1或$a=\frac{{\sqrt{2}}}{2}$.
點評 此題要注意:已知三角形的兩邊和其中一邊的對角,要使該三角形的形狀大小唯一確定,則該三角形是直角三角形或鈍角三角形.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | $\sqrt{3}$ | C. | 3 | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{{2\sqrt{10}}}{5}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a6≥b6 | B. | a6≤b6 | C. | a12≥b12 | D. | a12<b12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com