15.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)的遞增區(qū)間.

分析 (1)根據(jù)三角函數(shù)的圖象求出A,ω,φ,即可確定函數(shù)的解析式;
(2)根據(jù)函數(shù)的表達式,利用正弦函數(shù)的性質(zhì)即可求函數(shù)f(x)的單調(diào)遞增區(qū)間;

解答 解:(1)由題圖可知,其振幅為A=2$\sqrt{3}$,
由于$\frac{T}{2}$=6-(-2)=8,
所以周期為T=16,
所以ω=$\frac{2π}{T}$=$\frac{2π}{16}$=$\frac{π}{8}$,
此時解析式為y=2$\sqrt{3}$sin($\frac{π}{8}$x+φ).
因為點(2,-2$\sqrt{3}$)在函數(shù)y=2$\sqrt{3}$sin($\frac{π}{8}$x+φ)的圖象上,
所以$\frac{π}{8}$×2+φ=2kπ-$\frac{π}{2}$(k∈Z),
所以φ=2kπ-$\frac{3π}{4}$(k∈Z).
又|φ|<π,所以φ=-$\frac{3π}{4}$.
故所求函數(shù)的解析式為y=2$\sqrt{3}$sin($\frac{π}{8}$x-$\frac{3π}{4}$).
(2)由2kπ-$\frac{π}{2}$≤$\frac{π}{8}$x-$\frac{3π}{4}$≤2kπ+$\frac{π}{2}$(k∈Z),得16k+2≤x≤16k+10(k∈Z),
所以函數(shù)y=2$\sqrt{3}$sin($\frac{π}{8}$x-$\frac{3π}{4}$)的遞增區(qū)間是[16k+2,16k+10](k∈Z).

點評 本題主要考查三角函數(shù)解析式的求法,根據(jù)三角函數(shù)的圖象是解決本題的關(guān)鍵,要求熟練掌握三角函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若O為△ABC所在平面內(nèi)任一點,且滿足($\overrightarrow{OB}$-$\overrightarrow{OC}$)•($\overrightarrow{OB}$+$\overrightarrow{OC}$-2$\overrightarrow{OA}$)=0,則△ABC的形狀為( 。
A.直角三角形B.等腰三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.三棱錐P-ABC中,PC⊥平面ABC,F(xiàn),G,H,分別是PC,AC,BC的中點,I是線段FG上任意一點,PC=AB=2BC=2.
(1)求證:HI∥平面PAB;
(2)若AC⊥BC,求點C到平面FGH的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.觀察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$;1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$…則可歸納出第n-1個式子為1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,一個正六角星薄片(其對稱軸與水平面垂直)勻速地升長水面,直到全部露出水面為止,記時刻t薄片露出水面部分的圖形面積為S(t)(S(0)=0),則導(dǎo)函數(shù)y=S'(x)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線m,n和平面α滿足m⊥α,m⊥n,則n與α的位置關(guān)系為(  )
A.n⊥αB.n?αC.n∥α或n?αD.都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$cos({α+β})=\frac{2}{3},cos({α-β})=\frac{1}{3}$,則tanα•tanβ=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)$f(x)=2sin({ωx-\frac{π}{3}})-2cos2θ({ω>0})$的圖象關(guān)于直線$x=-\frac{π}{12}$對稱,當(dāng)ω取最小正數(shù)時,方程f(x)=0在區(qū)間$[{0,\frac{π}{2}}]$上有兩個不等的實根α,β,則α+β+θ的取值范圍為[kπ+$\frac{3π}{4}$,kπ+$\frac{5π}{6}$)∪(kπ+$\frac{5π}{6}$,kπ+$\frac{11π}{12}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若有99%的把握說事件A與事件B有關(guān),那么具體算出的X2一定滿足( 。
A.X2>10.828B.X2<10.828C.X2>6.635D.X2<6.635

查看答案和解析>>

同步練習(xí)冊答案