14.動點A(x,y)在圓x2+y2=1上繞坐標原點沿逆時針方向勻速旋轉(zhuǎn),其初始位置為A0($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),12秒旋轉(zhuǎn)一周,則動點A的縱坐標y關(guān)于時間t(單位:秒)的函數(shù)解析式為( 。
A.$y=sin(\frac{π}{3}t+\frac{π}{6})$B.$y=cos(\frac{π}{6}t+\frac{π}{3})$C.$y=sin(\frac{π}{6}t+\frac{π}{3})$D.$y=cos(\frac{π}{3}t+\frac{π}{6})$

分析 首先,設(shè)y關(guān)于t的函數(shù):y=sin(ωt+θ),根據(jù)周期求出ω,再根據(jù)過點A求出φ,問題得以解決

解答 解:設(shè)y關(guān)于t的函數(shù):y=sin(ωt+θ)
∵12秒旋轉(zhuǎn)一周,
∴T=$\frac{2π}{ω}$=12,
∴ω=$\frac{π}{6}$,
∵當t=0時,點A0($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),將該點代入,得到θ=$\frac{π}{3}$,
∴y=sin($\frac{π}{6}$t+$\frac{π}{3}$),
故選:C

點評 本題考查函數(shù)的解析式的求法,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于中檔題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知向量$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cosβ,sinβ)$,0<β<α<π.
(1)若$|\overrightarrow a-\overrightarrow b|=\sqrt{2}$,求$\overrightarrow a,\overrightarrow b$的夾角θ的值;
(2)設(shè)$\overrightarrow c=(0,1)$,若$\overrightarrow a+\overrightarrow b=\overrightarrow c$,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-4y≥-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$.
(1)求z=$\frac{y+1}{x+1}$的取值范圍;
(2)求z=|x+y+1|最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知復(fù)數(shù)z=2+3i,則|z|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求下列函數(shù)的導數(shù)
(1)y=(2x2+3)(3x-1);       
 (2)y=xex+2x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知a>c>1>b>0,則(  )
A.b-a<b-cB.logab>logcbC.ab+cb<(a+c)bD.loga(c-b)>logc(a-b)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=x2-2ax+1(a∈R)在[2,+∞)上單調(diào)遞增,
(1)若函數(shù)y=f(2x)有實數(shù)零點,求滿足條件的實數(shù)a的集合A;
(2)若對于任意的a∈[1,2]時,不等式f(2x+1)>3f(2x)+a恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)=-$\frac{5}{2}$x+b在區(qū)間(0,2)有兩個不等實根,求實數(shù)b的取值范圍;
(4)對于n∈N*,證明:$\frac{2}{1^2}+\frac{3}{2^2}+\frac{4}{3^2}+…+\frac{n+1}{n^2}>ln(n+1)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.“現(xiàn)代五項”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運動項目,包含射擊、擊劍、游泳、馬術(shù)和越野跑五項運動.已知甲、乙、丙共三人參加“現(xiàn)代五項”.規(guī)定每一項運動的前三名得分都分別為a,b,c(a>b>c且a,b,c∈N*),選手最終得分為各項得分之和.已知甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名,則游泳比賽的第三名是( 。
A.B.C.D.乙和丙都有可能

查看答案和解析>>

同步練習冊答案