解下列不等式:(1)x2-8x+15<0
(2)|2x-3|≥7.
考點(diǎn):絕對(duì)值不等式的解法,一元二次不等式的解法
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:(1)運(yùn)用因式分解的方法,再由符號(hào)法,即可得到解集;
(2)運(yùn)用絕對(duì)值不等式的解集,即|x|≥a則x≥a或x≤-a,化簡(jiǎn)即可得到.
解答: 解:(1)x2-8x+15<0即為(x-3)(x-5)<0,
即有
x-3>0
x-5<0
x-3<0
x-5>0

即3<x<5或x∈∅,
則解集為(3,5);
(2)|2x-3|≥7即為2x-3≥7或2x-3≤-7,
則x≥5或x≤-2.
則解集為(-∞,-2]∪[5,+∞).
點(diǎn)評(píng):本題考查一元二次不等式和絕對(duì)值不等式的解法,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線y=-
4
x
的一條切線l與直線x+4y-8=0垂直,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐V-ABC中,VB=6,AC=3,P為△VAC的重心,過(guò)點(diǎn)P作三棱錐的一個(gè)截面,使截面平行于直線VB和AC,則截面的周長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=kx2+(3+k)x+3,其中k為常數(shù),且k≠0,f(2)=3.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè)函數(shù)g(x)=f(x)-mx,若g(x)在區(qū)間[-2,+∞)上是單調(diào)遞減的,求m的取值范圍;
(3)定義:“若對(duì)于任意函數(shù),有x∈[a,b]時(shí),h(x)∈[a,b],則稱h(x)的保值區(qū)間,”本題中,求f(x)的保值區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列四個(gè)命題:
①命題“若xy=1,則x,y互為倒數(shù)”的逆命題;
②命題“面積相等的三角形全等”的否命題;
③命題“若m>1,則x2-2x+m=0有實(shí)根”的逆否命題;
④命題“若A∩B=B,則A⊆B”的逆否命題.
其中是真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐的側(cè)面展開圖是圓心角為120°、半徑為2的扇形,則圓錐的表面積
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0.
(1)當(dāng)m為何值時(shí),方程C表示圓;
(2)在(1)的條件下,若圓C與直線l:x+2y-4=0相交于M、N兩點(diǎn),且|MN|=
4
5
5
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2-2ax+2.
(1)求f(x)在區(qū)間[2,+∞)上的最小值;
(2)若不等式f(x)>0在區(qū)間[2,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(
x
+1)=x+2
x
.則f(x)=( 。
A、f(x)=x+2
x
B、f(x)=x+2
x
(x≥0)
C、f(x)=x2-1
D、f(x)=x2-1(x≥1)

查看答案和解析>>

同步練習(xí)冊(cè)答案