下圖是兩個(gè)全等的正三角形.給定下列三個(gè)命題:①存在四 棱錐,其正視圖、側(cè)視圖如右圖;②存在三棱錐,其正視圖、側(cè)視圖如右圖;③存在圓錐,其正視圖、側(cè)視圖如右圖.其中 真命題的個(gè)數(shù)是
A.3B.2C.1D.O
A

試題分析:對(duì)于①存在四棱錐,其正視圖、側(cè)視圖,這時(shí)的四棱錐是正四棱錐可以滿足題意。
②存在三棱錐,其正視圖、側(cè)視圖,那么對(duì)于正四面體符合題意。
③存在圓錐,其正視圖、側(cè)視圖只要底面的圓的直徑和側(cè)棱長(zhǎng)相等則符合題意。故選A.
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于特殊的幾何體的三視圖的準(zhǔn)確理解和運(yùn)用。同時(shí)要通過(guò)不同的擺放來(lái)實(shí)現(xiàn)三視圖,這是試題的一個(gè)難點(diǎn),屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知正三角形ABC的邊長(zhǎng)為a,那么△ABC的平面直觀圖△A′B′C′的面積為( )
A.a2B.a2C.a2D.a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為(   )
A.25B.36C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分) 已知四棱錐,底面ABCD,其三視圖如下,若M是PD的中點(diǎn)

⑴ 求證:PB//平面MAC;
⑵ 求直線PC與平面MAC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐的底面是菱形,, 是的中點(diǎn), 的中點(diǎn).

(Ⅰ)求證:面⊥面; 
(Ⅱ)求證:∥面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)
如圖,在直三棱柱中,,.棱上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF =" a" (a為常數(shù)).

(Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;      
(Ⅱ)判斷三棱錐B—CEF的體積是否為定值.若是定值,求出這個(gè)三棱錐的體積;若不是定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

圖1是一個(gè)正方體的表面展開(kāi)圖,MN和PB是兩條面對(duì)角線,請(qǐng)?jiān)趫D2的正方體中將MN和PB畫出來(lái),并就這個(gè)正方體解決下列問(wèn)題

(1) 求證:MN//平面PBD; (2)求證:AQ平面PBD;
(3)求二面角P-DB-M的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

幾何體的三視圖如圖所示,則該幾何體的體積為
A.2π+2√3B.4π+2√3
C.2π+2√3/3D.4π+2√3/3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)幾何體的三視圖如圖3所示,其中主視圖中是邊長(zhǎng)為的正三角形,俯視圖為正六邊形,那么該幾何體的左視圖的面積為
 
A.B.C.1D.

查看答案和解析>>

同步練習(xí)冊(cè)答案