設(shè)∈(),∈(),那么“<”是“tan<tan”的

A. 充分不必要條件        B. 必要不充分條件

C. 充分必要條件          D. 既不充分也不必要條件

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•綿陽一模)現(xiàn)有若干枚形狀完全相同的硬幣,已知其中一枚略重,其余各枚重量均相同,要求使用天平(不用砝碼),將略重的那枚硬幣找出來.小王的方案是:首先任取兩枚放在天平兩側(cè)進(jìn)行稱量,若天平不平衡,則重的那邊為略重的那枚硬幣:若天干平衡,將兩枚都取下,從剩下的硬幣中再任取兩枚放在天平兩側(cè)進(jìn)行稱量,如此進(jìn)行下去,直到找到那枚略重的硬幣為止.若小王恰好在第一次就找出略重的那枚硬幣的概率為
29

(I )請問共有多少枚硬幣?
(II)設(shè)ξ為找到略重那枚硬幣時(shí)己稱量的次數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){Fn}是斐波那契數(shù)列,則F1=F2=1,F(xiàn)n=Fn-1+Fn-2,)如圖是輸出斐波那契數(shù)列的一個(gè)算法流程圖,現(xiàn)要表示輸出斐波那契數(shù)列的前20項(xiàng),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是
i≤9
i≤9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:綿陽一模 題型:解答題

現(xiàn)有若干枚形狀完全相同的硬幣,已知其中一枚略重,其余各枚重量均相同,要求使用天平(不用砝碼),將略重的那枚硬幣找出來.小王的方案是:首先任取兩枚放在天平兩側(cè)進(jìn)行稱量,若天平不平衡,則重的那邊為略重的那枚硬幣:若天干平衡,將兩枚都取下,從剩下的硬幣中再任取兩枚放在天平兩側(cè)進(jìn)行稱量,如此進(jìn)行下去,直到找到那枚略重的硬幣為止.若小王恰好在第一次就找出略重的那枚硬幣的概率為
2
9

(I )請問共有多少枚硬幣?
(II)設(shè)ξ為找到略重那枚硬幣時(shí)己稱量的次數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《算法初步與框圖》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(上海交大附中)(解析版) 題型:填空題

設(shè){Fn}是斐波那契數(shù)列,則F1=F2=1,F(xiàn)n=Fn-1+Fn-2,)如圖是輸出斐波那契數(shù)列的一個(gè)算法流程圖,現(xiàn)要表示輸出斐波那契數(shù)列的前20項(xiàng),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省綿陽市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

現(xiàn)有若干枚形狀完全相同的硬幣,已知其中一枚略重,其余各枚重量均相同,要求使用天平(不用砝碼),將略重的那枚硬幣找出來.小王的方案是:首先任取兩枚放在天平兩側(cè)進(jìn)行稱量,若天平不平衡,則重的那邊為略重的那枚硬幣:若天干平衡,將兩枚都取下,從剩下的硬幣中再任取兩枚放在天平兩側(cè)進(jìn)行稱量,如此進(jìn)行下去,直到找到那枚略重的硬幣為止.若小王恰好在第一次就找出略重的那枚硬幣的概率為
(I )請問共有多少枚硬幣?
(II)設(shè)ξ為找到略重那枚硬幣時(shí)己稱量的次數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案