在四棱錐PABCD中,底面ABCD是一直角梯形,∠BAD=90°,ADBC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD與底面成30°角.

(1)若AEPD,E為垂足,求證:BEPD;

(2)求異面直線AECD所成角的余弦值.

(1)證明:∵PA⊥平面ABCD,∴PAAB,又ABAD.∴AB⊥平面PAD.又∵AEPD,∴PD⊥平面ABE,故BEPD

(2)解析:以A為原點,AB、AD、AP所在直線為坐標軸,建立空間直角坐標系,則點C、D的坐標分別為(aa,0),(0,2a,0).

PA⊥平面ABCD,∠PDAPD與底面ABCD所成的角,∴∠PDA=30°.

于是,在Rt△AED中,由AD=2a,得AE=a.過EEFAD,垂足為F,在Rt△AFE中,由AE=a,∠EAF=60°,得AF=,EF=a,∴E(0,a

于是,={-a,a,0}

設(shè)的夾角為θ,則由

cosθ=

AECD所成角的余弦值為

評述:第(2)小題中,以向量為工具,利用空間向量坐標及數(shù)量積,求兩異面直線所成的角是立體幾何中的常見問題和處理手段
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面為直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分別為PC、PB的中點.
(1)求證:PB⊥DM;
(2)求BD與平面ADMN所成角的大。
(3)求二面角B-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于點N,M是PD中點.
(1)用空間向量證明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直線CD與平面ACM所成的角的正弦值.
(3)求點N到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,O為底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中點
(1)求證:直線MO∥平面PAB;
(2)求證:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求證:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都模擬)如圖,在四棱錐P-ABCD中,底面ABCD為正方形,且PD⊥平面ABCD,PD=AB=1,EF分別是PB、AD的中點,
(I)證明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

同步練習冊答案