(2011•豐臺(tái)區(qū)二模)已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2.?dāng)?shù)列{bn}為等比數(shù)列,且b1=1,b4=8.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足cn=abn,求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)在(2)的條件下,數(shù)列{cn}中是否存在三項(xiàng),使得這三項(xiàng)成等差數(shù)列?若存在,求出此三項(xiàng);若不存在,說明理由.
分析:(1)對(duì)于數(shù)列{an},已知Sn=n2,利用遞推公式可求當(dāng)n≥2時(shí),an=Sn-Sn-1,當(dāng)n=1時(shí),a1=S1=1可求an,對(duì)于數(shù)列{bn},是等比數(shù)列,設(shè)公比為q,及b1=1,b4=b1q3=8,可求q,進(jìn)而可求bn
(2)由題意可得,cn=abn=2bn-1=2n-1,結(jié)合數(shù)列的特點(diǎn)可考慮利用分組求和,結(jié)合等差數(shù)列及等比數(shù)列的求和公式可求;
(3)假設(shè)數(shù)列{cn}中存在三項(xiàng)cm,ck,cl成等差數(shù)列,則2ck=cl+cm,由(2)可得2(2k-1)=(2m-1)+(2l-1),變形可得2•2k=2m+2l=2m(1+2l-m),進(jìn)而可變形為2k+1-m-2l-m=1,由整數(shù)的性質(zhì)可得矛盾,即可以得打結(jié)論.
解答:解:(1)∵數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2,
∴當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-(n-1)2=2n-1.
當(dāng)n=1時(shí),a1=S1=1亦滿足上式,
故an=2n-1,(n∈N*).       
又?jǐn)?shù)列{bn}為等比數(shù)列,設(shè)公比為q,
∵b1=1,b4=b1q3=8,∴q=2.
∴bn=2n-1(n∈N*).                      
(2)cn=abn=2bn-1=2n-1
Tn=c1+c2+c3+…cn=(21-1)+(22-1)+…+(2n-1)=(21+22+…2n)-n=
2(1-2n)
1-2
-n

所以 Tn=2n+1-2-n.                               
(3)假設(shè)數(shù)列{cn}中存在三項(xiàng)cm,ck,cl成等差數(shù)列,不妨設(shè)m<k<l(m,k,l∈N*)
因?yàn)?nbsp;cn=2n-1,
所以 cm<ck<cl,且三者成等差數(shù)列.
所以 2ck=cl+cm,
即2(2k-1)=(2m-1)+(2l-1),
變形可得:2•2k=2m+2l=2m(1+2l-m
所以 
2k+1
2m
=1+2l-m
,即2k+1-m=1+2l-m
所以 2k+1-m-2l-m=1.
因?yàn)閙<k<l(m,k,l∈N*),
所以 2k+1-m,2l-m均為偶數(shù),而1為奇數(shù),
所以等式不成立.
所以數(shù)列{cn}中不存在三項(xiàng),使得這三項(xiàng)成等差數(shù)列.
點(diǎn)評(píng):本題綜合考查等比數(shù)列、與等差數(shù)列,涉及數(shù)列的等差、等比的性質(zhì)、等差數(shù)列的判定以及數(shù)列的求和,需要全面掌握數(shù)列的有關(guān)性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•豐臺(tái)區(qū)二模)已知函數(shù)f(x)=x2-2x,g(x)=ax+2(a>0),若?x1∈[-1,2],?x2∈[-1,2],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•豐臺(tái)區(qū)二模)由1,2,3,4,5組成沒有重復(fù)數(shù)字且2與5不相鄰的四位數(shù)的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•豐臺(tái)區(qū)二模)已知a>0且a≠1,函數(shù)y=logax,y=ax在同一坐標(biāo)系中的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•豐臺(tái)區(qū)二模)已知x,y的取值如下表:從散點(diǎn)圖可以看出y與x線性相關(guān),且回歸方程為
y
=0.95x+a
,則a=( 。
x 0 1 3 4
y 2.2 4.3 4.8 6.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•豐臺(tái)區(qū)二模)如圖所示,已知
AB
=2
BC
,
OA
=
a
,
OB
=
b
,
OC
=
c
,則下列等式中成立的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案