7.閱讀程序:若INPUT語句中輸入m,n的數(shù)據(jù)分別是72,168,則程序運行的結(jié)果為24.

分析 模擬程序語言的運行過程,知該程序運行后輸出的是求m,n的最大公約數(shù),代入數(shù)據(jù)計算即可.

解答 解:根據(jù)程序語言的運行過程得,
該程序運行后輸出的是求m,n的最大公約數(shù),
當m=72,n=168時,
輸出的結(jié)果為:24.
故答案為:24.

點評 本題考查了程序語言的應用問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.f($\sqrt{x}$+1)=x+3,則f(x)=x2-2x+4,(x≥1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.計算:
(1)(-3)×4$\overrightarrow a$;
(2)$3(\overrightarrow a+\overrightarrow b)-2(\overrightarrow a-\overrightarrow b)-\overrightarrow a$
(3)$(2\overrightarrow a+3\overrightarrow b-\overrightarrow c)-(3\overrightarrow a-2\overrightarrow b+\overrightarrow c)$
(4)$\frac{1}{12}[{2({2\overrightarrow a+8\overrightarrow b})-4({4\overrightarrow a-2\overrightarrow b})}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ax2+x-2,g(x)=x3+x2+3x-2
(1)若函數(shù)f(x)在(0,+∞)有兩個不同的零點,求實數(shù)a的取值范圍;
(2)當x∈[1,3],不等式f(x)<g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.己知a=${∫}_{0}^{\frac{π}{2}}$($\frac{1}{2}$-sin2$\frac{x}{2}$)dx,則(ax+$\frac{1}{2ax}$)9展開式中,x的一次項系數(shù)為( 。
A.-$\frac{63}{16}$B.$\frac{63}{16}$C.-$\frac{63}{8}$D.$\frac{63}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知條件p:x2-3x-4≤0;條件q:x2-6x+9-m2≤0,若p是q的充分不必要條件,則實數(shù)m的取值范圍是(-∞,-4]∪[4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在△ABC中,$\overrightarrow{MB}$=$\frac{1}{4}$$\overrightarrow{AB}$,且對AB邊上任意一點N,恒有$\overrightarrow{NB}$•$\overrightarrow{NC}$≥$\overrightarrow{MB}$•$\overrightarrow{MC}$,則有( 。
A.AB⊥BCB.AB⊥ACC.AB=ACD.AC=BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知向量$\overrightarrow a=(sin\frac{ωx}{2},-sin\frac{ωx}{2}),\overrightarrow b=(cos\frac{ωx}{2},sin\frac{ωx}{2})(ω>0)$,函數(shù)$f(x)=\overrightarrow a•\overrightarrow b$,x1,x2是函數(shù)f(x)的任意兩個相異零點,且|x1-x2|的最小值為$\frac{π}{2}$.
(Ⅰ)求ω的值;
(Ⅱ)若函數(shù)g(x)=f(x)-m在$(0,\frac{π}{2})$上無零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.不論k取何值,直線l:kx-y+1=3k恒過定點,此定點坐標為(3,1).

查看答案和解析>>

同步練習冊答案