觀察下列等式:(x2+x+1)=1;(x2+x+1)1=x2+x+1;(x2+x+1)2=x4+2x3+3x2+2x+1;(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;…;可能以推測,(x2+x+1)5展開式中,第五、六、七項的系數(shù)和是    
【答案】分析:利用多項式乘法的法則得到各項的構(gòu)成方法求出展開式各項的系數(shù)和.
解答:解:展開式的第五項是含x6的項;其構(gòu)成是5個多項式3個出x2,其它都出1;5個多項式2個出x2,2個出x,其它出1;
5個多項式1個出x2,4個出x
其系數(shù)為C53+C52C32+C51=45
展開式的第6項同樣的方法其系數(shù)為C52C31+C51C43+1=51
展開式的第7項同樣的方法其系數(shù)為C52+C51C42+C54=45
所以展開式中,第五、六、七項的系數(shù)和是35+51+45=141
故答案為141
點評:本題考查利用分類計數(shù)原理和分布計數(shù)原理求出完成事件的方法數(shù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

14、觀察下列等式:(x2+x+1)0=1;(x2+x+1)1=x2+x+1;(x2+x+1)2=x4+2x3+3x2+2x+1;(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;…;可能以推測,(x2+x+1)5展開式中,第五、六、七項的系數(shù)和是
141

查看答案和解析>>

科目:高中數(shù)學 來源:杭州二模 題型:填空題

觀察下列等式:(x2+x+1)0=1;(x2+x+1)1=x2+x+1;(x2+x+1)2=x4+2x3+3x2+2x+1;(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;…;可能以推測,(x2+x+1)5展開式中,第五、六、七項的系數(shù)和是 ______.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年浙江省高考數(shù)學沖刺試卷6(理科)(解析版) 題型:解答題

觀察下列等式:(x2+x+1)=1;(x2+x+1)1=x2+x+1;(x2+x+1)2=x4+2x3+3x2+2x+1;(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;…;可能以推測,(x2+x+1)5展開式中,第五、六、七項的系數(shù)和是    

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省杭州市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

觀察下列等式:(x2+x+1)=1;(x2+x+1)1=x2+x+1;(x2+x+1)2=x4+2x3+3x2+2x+1;(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;…;可能以推測,(x2+x+1)5展開式中,第五、六、七項的系數(shù)和是    

查看答案和解析>>

同步練習冊答案