已知函數(shù),的導(dǎo)函數(shù)。 (1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)若對一切的實數(shù),有成立,求的取值范圍;

(3)當(dāng)時,在曲線上是否存在兩點,使得曲線在 兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標(biāo)的最大值;若不存在,請說明理由.

 

(1)當(dāng)時,的減區(qū)間為;當(dāng)時,的減區(qū)間為; 當(dāng)時,無減區(qū)間.(2) (3)存在,且交點縱坐標(biāo)的最大值為10.

【解析】

試題分析:(1)首先對函數(shù)求導(dǎo),然后根據(jù)導(dǎo)數(shù)的性質(zhì),求原函數(shù)的單調(diào)區(qū)間.

(2)由題意可知恒成立,根據(jù)絕對值的幾何意義,分類去掉絕對值符號,然后再根據(jù)基本不等式求解即可.

(3)設(shè)切線與直線的公共點為P(2,t),當(dāng)時,則,由導(dǎo)數(shù)的幾何意義可知點A為切點的切線的斜率k=,切線方程為.把點P(2,t)代入切線方程中,整理得,同理可得,設(shè),則原問題等價于函數(shù)至少有兩個不同的零點.求,利用導(dǎo)數(shù)的性質(zhì)求出函數(shù)g(x)的單調(diào)區(qū)間和極值,欲使至少有兩個不同的零點,則需滿足極大值g(0)≥0且極小值g(2)≤0,解出t即可.

(1)當(dāng)時,的減區(qū)間為

當(dāng)時,的減區(qū)間為; 當(dāng)時,無減區(qū)間。 4分

(2)由條件得:,

當(dāng)時,得,即恒成立,因為

(當(dāng)時等號成立),所以,即; 6分

當(dāng)時,得,即恒成立,因為,(當(dāng)時等號成立),所以,即;

當(dāng)時,;

綜上所述,的取值范圍是 9分

(3)設(shè)切線與直線的公共點為,當(dāng)時,,

,因此以點為切點的切線方程為

因為點在切線上,所以,即

同理可得方程. 11分

設(shè),則原問題等價于函數(shù)至少有兩個不同的零點.

因為,

當(dāng)時,單調(diào)遞增,當(dāng)時,遞減。

因此,處取得極大值,在處取得極小值

若要滿足至少有兩個不同的零點,則需滿足,解得

故存在,且交點縱坐標(biāo)的最大值為10.

考點:1.求函數(shù)的導(dǎo)數(shù);2.導(dǎo)數(shù)的性質(zhì)及其應(yīng)用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省高三年級模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

方體ABCD-A1B1C1D1中,E為棱BB1的中點(如圖1),用過點A,E,C1的平面截去該正方體的上半部分,則剩余幾何體的左視圖為

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省鷹潭市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

表示不超過的最大整數(shù),例如:

依此規(guī)律,那么( )

A. B.    C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

方程兩根,且,則

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

等比數(shù)列{}的前n項和為,若( )

A.27 B.81 C.243 D.729

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知

(1)最小正周期及對稱軸方程;

(2)已知銳角的內(nèi)角的對邊分別為,且 ,,求邊上的高的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知等差數(shù)列的首項為,公差為,其前n項和為,若直線與圓的兩個交點關(guān)于直線對稱,則數(shù)列的前10項和=( )

A. B. C. D.2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

過雙曲線的左焦點,作傾斜角為的直線交該雙曲線右支于點,若,且,則雙曲線的離心率為__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省宜春市高三考前模擬理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)P(x,y)是曲線C:為參數(shù),∈[0,2))上任意一點,則的取值范圍是 。

 

查看答案和解析>>

同步練習(xí)冊答案