某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測試指標分為:指標大于或等于90為一等品,大于或等于小于為二等品,小于為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進行檢測,檢測結(jié)果統(tǒng)計如下:

測試指標







3
7
20
40
20
10

5
15
35
35
7
3
 
根據(jù)上表統(tǒng)計得到甲、乙兩人生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的頻率分別估計為他們生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的概率.
(1)計算甲生產(chǎn)一件產(chǎn)品A,給工廠帶來盈利不小于30元的概率;
(2)若甲一天能生產(chǎn)20件產(chǎn)品A,乙一天能生產(chǎn)15件產(chǎn)品A,估計甲乙兩人一天生產(chǎn)的35件產(chǎn)品A中三等品的件數(shù).

(1);(2)參考解析

解析試題分析:(1)由題意可得100件產(chǎn)品中甲有10件指標小于80,所以給工廠帶來盈利小于30元的概率為.所以甲生產(chǎn)一件產(chǎn)品A,給工廠帶來盈利不小于30元的概率為.
(2)依題意可得甲、乙生產(chǎn)一件產(chǎn)品A是三等品的件數(shù)分別為10,20.所以三等品的概率分別是.所以甲一天能生產(chǎn)20件產(chǎn)品A,乙一天能生產(chǎn)15件產(chǎn)品A中的三等品件數(shù)為2,3.即可得甲乙兩人一天生產(chǎn)的35件產(chǎn)品A中三等品的件數(shù).
試題解析:(1)甲生產(chǎn)一件產(chǎn)品A,給工廠帶來盈利不小于30元的概率為:
                             6分
(2)估計甲一天生產(chǎn)的20件產(chǎn)品A中有件三等品,         8分
估計乙一天生產(chǎn)的15件產(chǎn)品A中有件三等品,           10分
所以估計甲乙兩人一天生產(chǎn)的35件產(chǎn)品A中共有5件三等品.         12分
考點:1.統(tǒng)計問題.2.根據(jù)頻率估計概率.3.正難則反的解題思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校高一某班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,其可見部分如下,據(jù)此解答如下問題:
 
(1)計算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分數(shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份試卷的分數(shù)在之間的概率;
(3)根據(jù)頻率分布直方圖估計這次測試的平均成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種產(chǎn)品的廣告費支出x與銷售額(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):

x
2
4
5
6
8
y
30
40
50
60
70
 
(1)請畫出上表數(shù)據(jù)的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.
(3)經(jīng)計算,相關(guān)指數(shù),你可得到什么結(jié)論?
(參考數(shù)值:2×30+4×40+5×50+6×60+8×70==1390)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為預(yù)防X病毒爆發(fā),某生物技術(shù)公司研制出一種X病毒疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),公司選定2000個樣本分成三組,測試結(jié)果如下表:

分組



疫苗有效
673


疫苗無效
77
90

 
已知在全體樣本中隨機抽取1個,抽到組疫苗有效的概率是0.33.
(1)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,應(yīng)在組抽取樣本多少個?
(2)已知,,求通過測試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在對某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲,乙兩地出產(chǎn)的該產(chǎn)品中各隨機抽取10件,測量該產(chǎn)品中某種元素的含量(單位:毫克).
下表是測量數(shù)據(jù)的莖葉圖:
規(guī)定:當(dāng)產(chǎn)品中的此種元素含量毫克時為優(yōu)質(zhì)品.

(1)試用上述樣本數(shù)據(jù)估計甲,乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
(2)從乙地抽出的上述10件產(chǎn)品中,隨機抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識競賽”,先在本校進行選拔測試(滿分150分),若該校有100名學(xué)生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測試的平均成績;
(2)該校推薦選拔測試成績在110以上的學(xué)生代表學(xué)校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學(xué)生中隨機抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種水果的單個質(zhì)量在500g以上視為特等品.隨機抽取1000個該水果,結(jié)果有50個特等品.將這50個水果的質(zhì)量數(shù)據(jù)分組,得到下邊的頻率分布表.

(1)估計該水果的質(zhì)量不少于560g的概率;
(2)若在某批水果的檢測中,發(fā)現(xiàn)有15個特等品,據(jù)此估計該批水果中沒有達到特等品的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市為“市中學(xué)生知識競賽”進行選拔性測試,且規(guī)定:成績大于或等于90分的有參賽資格,90分以下(不包括90分)的被淘汰.若有500人參加測試,學(xué)生成績的頻率分布直方圖如圖.

(1)求獲得參賽資格的人數(shù);
(2)根據(jù)頻率直方圖,估算這500名學(xué)生測試的平均成績;
(3)若知識競賽分初賽和復(fù)賽,在初賽中每人最多有5次選題答題的機會,累計答對3題或答錯3題即終止,答對3題者方可參加復(fù)賽.已知參賽者甲答對每一個問題的概率都相同,并且相互之間沒有影響.已知他連續(xù)兩次答錯的概率為,求甲在初賽中答題個數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。

區(qū)間





人數(shù)

a
b
 
 
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求恰有1 人在第3組的概率。

查看答案和解析>>

同步練習(xí)冊答案