空間四邊形PABC中,PA、PB、PC兩兩相互垂直,∠PBA=45°,∠PBC=60°,M為AB的中點(diǎn).
(1)求BC與平面PAB所成的角;
(2)求證:AB⊥平面PMC.
解:∵PA⊥AB,∴∠APB=90°
在RtΔAPB中,∵∠ABP=45°,設(shè)PA=a,
則PB=a,AB=a,∵PB⊥PC,在RtΔPBC中,
∵∠PBC=60°,PB=a.∴BC=2a,PC=a.
∵AP⊥PC∴在RtΔAPC中,AC===2a
(1)∵PC⊥PA,PC⊥PB,∴PC⊥平面PAB,
∴BC在平面PBC上的射影是BP.
∠CBP是CB與平面PAB所成的角
∵∠PBC=60°,∴BC與平面PBA的角為60°.
(2)由上知,PA=PB=a,AC=BC=2a.
∴M為AB的中點(diǎn),則AB⊥PM,AB⊥CM.
∴AB⊥平面PCM.
說(shuō)明:要清楚線面的垂直關(guān)系,線面角的定義,通過(guò)數(shù)據(jù)特點(diǎn),發(fā)現(xiàn)解題捷徑.
此題數(shù)據(jù)特殊,先考慮數(shù)據(jù)關(guān)系及計(jì)算、發(fā)現(xiàn)解題思路.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:包頭33中09-10高二下學(xué)期期中考試文科數(shù)學(xué)試題 題型:解答題
(本小題滿分12分)如圖,在空間四邊形PABC中,,,.求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分13分) 如圖,空間四邊形PABC中,PB⊥底面ABC,∠BAC=90°;過(guò)點(diǎn)B作BE,
BF分別垂直于AP,CP于點(diǎn)E,F。
(1) 求證:AC⊥面PAB;w.w.w.k.s.5.u.c.o.m
(2) 求證:PC⊥EF。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com