1.已知命題p:?x0∈R,使tanx0=2;,命題q:?x∈R,都有x2+2x+1>0,則( 。
A.命題p∨q為假命題B.命題p∧q為真命題
C.命題p∧(¬q)為真命題D.命題p∨(¬q)為假命題
E.命題p∨q為假命題   

分析 由正切函數(shù)的值域判斷命題p正確;由x2+2x+1=(x+1)2≥0,判斷命題q錯誤,再由復(fù)合命題的真假判斷逐一核對四個選項得答案.

解答 解:∵正切函數(shù)y=tanx的值域為R,∴?x0∈R,使tanx0=2,則命題p為真命題;
∵x2+2x+1=(x+1)2≥0,當(dāng)x=-1時,x2+2x+1=0,
∴命題q:?x∈R,都有x2+2x+1>0為假命題.
∴命題p∨q為真命題,故A錯誤;
命題p∧q為假命題,故B錯誤;
命題p∧(¬q)為真命題,故C正確;
命題p∨(¬q)為真命題,故D錯誤.
故選:C.

點評 本題考查簡易邏輯的知識,考查復(fù)合命題的真假和真值表的運用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.治理大氣污染刻不容緩,根據(jù)我國分布的《環(huán)境空氣質(zhì)量數(shù)(AQI)技術(shù)規(guī)定》:空氣質(zhì)量指數(shù)劃分階為0~50、51~100、101~150、151~200、201~300和大于300六級,對應(yīng)于空氣質(zhì)量指數(shù)的六個級別,指數(shù)越大,級別越高,說明污染越嚴重,對人體健康的影響也越明顯.專家建議:當(dāng)空氣質(zhì)量指數(shù)小于150時,可以戶外運動;空氣質(zhì)量指數(shù)151及以上,不適合進行旅游等戶外活動,以下是某市2016年12月中旬的空氣質(zhì)量指數(shù)情況:
時間11日12日13日14日15日16日17日18日19日20日
AQI1491432512541385569102243269
(1)求12月中旬市民不適合進行戶外活動的概率;
(2)一外地游客在12月中旬來該市旅游,想連續(xù)游玩兩天,求適合旅游的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+2y-5≥0\\ x-y+1≥0\\ x+y-5≤0\end{array}\right.$,則z=(x-1)2+(y+1)2的最小值為(  )
A.$\frac{53}{4}$B.10C.$\frac{36}{5}$D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.歐拉公式eix=cosx+isinx(i是虛數(shù)單位,x∈R)是由瑞士著名的數(shù)學(xué)家歐拉發(fā)明的,它將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù),建立了三角函數(shù)與指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里有及其重要的地位,被譽為“數(shù)學(xué)中的天橋”,根據(jù)歐拉公式,若$z={e^{\frac{π}{3}i}}$,則復(fù)數(shù)z2在復(fù)平面內(nèi)所對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某醫(yī)學(xué)院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)y關(guān)于晝夜溫差x的線性回歸方程;
(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?
參考公式:回歸直線的方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知復(fù)數(shù)z滿足(1+2i)z=i,其中i為虛數(shù)單位,則復(fù)數(shù)z的虛部為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)向量$\overrightarrow{a}$=(4sin$\frac{ω}{2}$x,1),$\overrightarrow$=($\frac{1}{2}$cos$\frac{ω}{2}$x,-1)(ω>0),若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+1在區(qū)間[-$\frac{π}{5}$,$\frac{π}{4}$]上單調(diào)遞增,則實數(shù)ω的取值范圍為(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)常數(shù)λ>0,a>0,f(x)=$\frac{{x}^{2}}{λ+x}$-alnx
(1)若f(x)在x=λ處取得極小值為0,求λ和a的值;
(2)對于任意給定的正實數(shù)λ、a,證明:存在實數(shù)x0,當(dāng)x>x0時,f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.執(zhí)行如圖所示的偽代碼,若輸出的y值為1,則輸入x的值為-1.

查看答案和解析>>

同步練習(xí)冊答案