復(fù)數(shù)
1-i
2-i
的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的除法運(yùn)算,以及復(fù)平面上的點(diǎn)與復(fù)數(shù)的關(guān)系,即可得出.
解答: 解:
1-i
2-i
=
(1-i)(2+i)
(2-i)(2+i)
=
3-i
5
,
∴其共軛復(fù)數(shù)為
3
5
+
1
5
i.
∴其共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)(
3
5
1
5
)
位于第一象限.
故選:A.
點(diǎn)評(píng):本題考查復(fù)數(shù)的除法運(yùn)算,以及復(fù)平面上的點(diǎn)與復(fù)數(shù)的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A是圓x2+y2=4上的任意一點(diǎn),l是過(guò)點(diǎn)A與x軸垂直的直線(xiàn),D是直線(xiàn)l與x軸的交點(diǎn),點(diǎn)M在直線(xiàn)l上,且滿(mǎn)足
DM
=
3
2
DA
,當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的標(biāo)準(zhǔn)方程;
(2)設(shè)曲線(xiàn)C的左右焦點(diǎn)分別為F1、F2,經(jīng)過(guò)F2的直線(xiàn)m與曲線(xiàn)C交于P、Q兩點(diǎn),若|PQ|2=|F1P|2+|F1Q|2,求直線(xiàn)m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)(x-
2
x
)6
的展開(kāi)式中x3的系數(shù)為a,二項(xiàng)式系數(shù)為b,則
a
b
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若α為銳角,且sinα:sin
α
2
=8:5,則cosα的值為(  )
A、
4
5
B、
12
25
C、
8
25
D、
7
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxcosx+
1
2
cos2x,若將其圖象向右平移φ(φ>0)個(gè)單位所得的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則φ的最小值為( 。
A、
π
6
B、
6
C、
π
12
D、
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1,
(Ⅰ)判斷函數(shù)f(x)的奇偶性并證明;
(Ⅱ)證明f(x)在(0,+∞)內(nèi)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x+2y+3z=2,則x2+y2+z2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是周期函數(shù),10是f(x)的一個(gè)周期,且f(2)=
2
,則f(22)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c均為正實(shí)數(shù),且滿(mǎn)足abc=1,證明:
(1)a+b+c≥
1
a
+
1
b
+
1
c
;
(2)a2+b2+c2
a
+
b
+
c

查看答案和解析>>

同步練習(xí)冊(cè)答案