8.已知某產(chǎn)品的廣告費用x與銷售額y之間有如下的對應(yīng)數(shù)據(jù):
x(萬元) 2 4 5 6 8
y(萬元) 30 40 60 50 70
(1)y與x是否具有線性相關(guān)關(guān)系?若有,求出y對x的線性回歸方程;
(2)據(jù)此估計廣告費用為11萬元時銷售額的值.
(參考公式:$\stackrel{∧}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

分析 (1)根據(jù)所給的數(shù)據(jù)計算出x,y的平均數(shù)和回歸直線的斜率,即可寫出回歸直線方程,
(2)由(1)中的回歸直線方程,把所給的自變量x代入方程,得到y(tǒng)的一個估計值,得到結(jié)果.

解答 解:(1)y與x具有線性相關(guān)關(guān)系,$\overline{x}$=5,$\overline{y}$=50,(2分)
$\sum_{i=1}^{5}{{x}_{i}}^{2}$=145,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=2×30+4×40+5×60+6×50+8×70=1380,(4分)
∴$\stackrel{∧}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$=6.5,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=17.5,(7分)
∴回歸直線方程為y=6.5x+17.5.(8分)
(2)x=11時,預(yù)報y的值為y=11×6.5+17.5=89.
答:廣告費用為11銷售收入y的值大約89萬元.(12分)

點評 本題考查回歸分析的初步應(yīng)用,寫方程要用的斜率和x,y的平均數(shù)都要經(jīng)過計算算出,這樣的題有一定的運算量,是一個基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ)若圓x2+y2=4在伸縮變換$\left\{\begin{array}{l}{x′=λx}\\{y′=3y}\end{array}\right.$(λ>0)的作用下變成一個焦點在x軸上,且離心率為$\frac{4}{5}$的橢圓,求λ的值;
(Ⅱ)在極坐標系中,已知點A(2,0),點P在曲線C:$ρ=\frac{2+2cosθ}{si{n}^{2}θ}$上運動,求P、A兩點間的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}12ax+1,0<x<a\\{log_{\frac{1}{2}}}x+2,a≤x<1\end{array}$且f(a2)=$\frac{5}{2}$,若當0<x1<x2<1時,f(x1)=f(x2),則x1•f(x2)的取值范圍為( 。
A.$(\frac{1}{6},\frac{1}{3}]$B.$(\frac{1}{3},1]$C.$[\frac{1}{6},\frac{1}{3})$D.$[\frac{1}{3},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC的面積為$3-\sqrt{3},B={60°}$,又最大角與最小角的正切值恰好為方程 ${x^2}-3x+2=\sqrt{3}(x-1)$的根,求△ABC的另外兩個角和三條邊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若復(fù)數(shù)z滿足$\frac{zi}{z-i}=1$,其中i為虛數(shù)單位,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.$-\frac{1}{2}+\frac{i}{2}$B.$-\frac{1}{2}-\frac{i}{2}$C.$\frac{1}{2}-\frac{i}{2}$D.$\frac{1}{2}+\frac{i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.平面上若一個三角形的周長為L,其內(nèi)切圓的半徑為R,則該三角形的面積S=$\frac{1}{2}LR$,類比到空間,若一個四面體的表面積為S,其內(nèi)切球的半徑為R,則該四面體的體積V=$\frac{1}{3}$SR.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x3-3x2+ax+2,曲線y=f(x)在點(0,2)處的切線與x軸交點的橫坐標為-2,則a的值為(  )
A.1B.3C.$\frac{1}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,某幾何體的三視圖是三個邊長為1的正方形及每個正方形內(nèi)一段半徑為1,圓心角為90°的圓弧,則該幾何體的體積是( 。
A.1-$\frac{π}{12}$B.1-$\frac{π}{3}$C.1-$\frac{π}{6}$D.1-$\frac{π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在2,0,1,7這組數(shù)據(jù)中,隨機取出三個不同的數(shù),則數(shù)字2是取出的三個不同數(shù)的中位數(shù)的概率為(  )
A.$\frac{3}{4}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案