函數(shù)的最大值為   
【答案】分析:原式可化為:y(2-cosx)=2+cosx,可得cosx=,由-1≤cosx≤1,即可求出y的取值范圍.
解答:解:原式可化為:y(2-cosx)=2+cosx,
∴cosx=,∵-1≤cosx≤1,
∴-1≤≤1,解得:≤y≤3,
故y的最大值為3,
故答案為:3.
點(diǎn)評(píng):本題考查了函數(shù)的值域,難度一般,關(guān)鍵是根據(jù)余弦函數(shù)的有界性進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
2
x+2
,(x∈[3,7])則函數(shù)的最大值為
2
5
2
5
,最小值為
2
9
2
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,真命題的個(gè)數(shù)為( 。
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)函數(shù)的y=lg(x2+ax+1)的值域?yàn)镽,則實(shí)數(shù)-2<a<2;
(4)已知函數(shù)f(x)=sin(ωx+
π
6
)-2
(ω>0)的導(dǎo)函數(shù)的最大值為3,則函數(shù)f(x)的圖象關(guān)于x=
π
3
對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
x-1
,(x∈[2,6])
,則函數(shù)的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2asin(2x-
π
6
)+b
的定義域?yàn)?span id="8vtfovc" class="MathJye">[0 , 
π
2
],函數(shù)的最大值為1,最小值為-5,求a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),則函數(shù)的最大值為
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案