在平面內(nèi),不等式確定的平面區(qū)域為,不等式組確定的平面區(qū)域為.
(1)定義橫、縱坐標為整數(shù)的點為“整點”. 在區(qū)域中任取3個“整點”,求這些“整點”中恰好有2個“整點”落在區(qū)域中的概率;
(2)在區(qū)域中每次任取一個點,連續(xù)取3次,得到3個點,記這3個點落在區(qū)域中的個數(shù)為,求的分布列和數(shù)學期望.
(1)(2)的分布列為

0
1
2
3





                                                              
的數(shù)學期望:.

試題分析:(1)依題可知平面區(qū)域的整點為:共有13個,上述整點在平面區(qū)域內(nèi)的為:共有3個,
.  
(2)依題可得,平面區(qū)域的面積為,設扇形區(qū)域中心角為,則,平面區(qū)域與平面區(qū)域相交部分的面積為.
在區(qū)域任取1個點,則該點在區(qū)域的概率為,隨機變量的可能取值為:.
,         
,  
的分布列為

0
1
2
3





                                                              
的數(shù)學期望:
點評:古典概型概率的求解先要找到所有基本事件總數(shù)及滿足題意要求的基本事件種數(shù),然后求其比值;分布列的題目要根據(jù)題目所描述的問題找到隨機變量可取的值,再依次求出各值對應的概率列表即可
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某校學習小組開展“學生語文成績與外語成績的關系”的課題研究,對該校高二年級800名學生上學期期末語文和外語成績,按優(yōu)秀和不優(yōu)秀分類得結果:語文和外語都優(yōu)秀的有60人,語文成績優(yōu)秀但外語不優(yōu)秀的有140人,外語成績優(yōu)秀但語文不優(yōu)秀的有100人.
(Ⅰ)能否在犯錯概率不超過0.001的前提下認為該校學生的語文成績與外語成績有關系?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,從該校高二年級學生成績中,有放回地隨機抽取3名學生的成績,記抽取的3 個成績中語文,外語兩科成績至少有一科優(yōu)秀的個數(shù)為X ,求X的分布列和期望E(x).

0.010
0.005
0.001

6.635
7.879
10.828
附:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在今年倫敦奧運會期間,來自美國和英國的共計6名志愿者被隨機地平均分配到跳水、籃球、體操這三個崗位服務,且跳水崗位至少有一名美國志愿者的概率是
(Ⅰ)求6名志愿者中來自美國、英國的各幾人;
(Ⅱ)求籃球崗位恰好美國人、英國人各一人的概率.
(Ⅲ)設隨機變量為在體操崗位服務的美國志愿者的個數(shù),求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若隨機變量ξ的分布列為:P(ξ=m)=,P(ξ=n)=a.若E(ξ)=2,則D(ξ)的最小值等于   .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知一個樣本的方差為
,
若這個樣本的容量為,平均數(shù)為,則(      )
A.0B.24C.52D.148

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

抽簽方式?jīng)Q定出場順序.通過預賽,選拔出甲、乙等五支隊伍參加決賽.
(Ⅰ)求決賽中甲、乙兩支隊伍恰好排在前兩位的概率;
(Ⅱ)若決賽中甲隊和乙隊之間間隔的隊伍數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某商場共五層,從五層下到四層有3個出口,從三層下到二層有4個出口,從二層下到一層有4個出口,從一層走出商場有6個出口。安全部門在每層安排了一名警員值班,負責該層的安保工作。假設每名警員到該層各出口處的時間相等,某罪犯在五樓犯案后,欲逃出商場,各警員同時接到指令,選擇一個出口進行圍堵。逃犯在每層選擇出口是等可能的。已知他被三樓警員抓獲的概率為
(Ⅰ)問四層下到三層有幾個出口?
(Ⅱ)天網(wǎng)恢恢,疏而不漏,犯罪嫌疑人最終落入法網(wǎng)。設抓到逃犯時,他已下了層樓,寫出的分布列,并求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)某校舉行環(huán)保知識大獎賽,比賽分初賽和決賽兩部分,初賽采用選手選一題答一題的方式進行,每位選手最多有5次選題答題的機會,選手累計答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進入決賽,答錯3題者則被淘汰,已知選手甲答題連續(xù)兩次答錯的概率為,(已知甲回答每個問題的正確率相同,并且相互之間沒有影響。)(I)求甲選手回答一個問題的正確率;(Ⅱ)求選手甲可進入決賽的概率;(Ⅲ)設選手甲在初賽中答題的個數(shù)為,試寫出的分布列,并求的數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋擲兩個骰子,至少有一個4點或5點出現(xiàn)時,就說這次試驗成功,則在10次試驗中,成功的次數(shù)X的期望是(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案