已知

(1)求sinx-cosx的值;

(2)求的值.

答案:略
解析:

解法1:由,

平方得

又∵

sinx0,cosx0,sinxcosx0

(2)

=sin xcos x(2cosxsinx)

解法2(1)聯(lián)立方程

由①得,將其代入②,整理得

,

(2)

sin xcos x(2cosxsinx)


提示:

本小題主要考查三角函數(shù)的基本公式、三角恒等變換、三角函數(shù)在各象限符號等基本知識,以及推理和運算能力.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)三棱錐S-ABC的三個側(cè)棱與底面ABC所成的角都是60°,又∠BAC=60°,且SA⊥BC.
(1)求證:S-ABC為正三棱錐;
(2)已知SA=a,求S-ABC的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,…,2n}(n∈N*).對于A的一個子集S,若存在不大于n的正整數(shù)m,使得對于S中的任意一對元素s1,s2,都有|s1-s2|≠m,則稱S具有性質(zhì)P.
(Ⅰ)當(dāng)n=10時,試判斷集合B={x∈A|x>9}和C={x∈A|x=3k-1,k∈N*}是否具有性質(zhì)P?并說明理由.
(Ⅱ)若n=1000時
①若集合S具有性質(zhì)P,那么集合T={2001-x|x∈S}是否一定具有性質(zhì)P?并說明理由;
②若集合S具有性質(zhì)P,求集合S中元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)三棱錐S-ABC的三個側(cè)棱與底面ABC所成的角都是60°,又∠BAC=60°,且SA⊥BC.
(1)求證:S-ABC為正三棱錐;
(2)已知SA=a,求S-ABC的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

19.

    在銳角△ABC中,角A、B、C所對的邊分別為a、b、c,已知sinA=,

    (1)求tan2+sin2的值;

    (2)若a=2,S△ABC=,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):9.10 棱柱與棱錐(解析版) 題型:解答題

如圖,設(shè)三棱錐S-ABC的三個側(cè)棱與底面ABC所成的角都是60°,又∠BAC=60°,且SA⊥BC.
(1)求證:S-ABC為正三棱錐;
(2)已知SA=a,求S-ABC的全面積.

查看答案和解析>>

同步練習(xí)冊答案