不等式a>105lga(a>0,a≠1)的解集是________.

答案:
解析:

  答案:當0<a<1時,-3<x<5;當a>1時,x<-3或x>5

  解析:105lga=a5,當0<a<1時,x2-2x-10<5,∴-3<x<5;當a>1時,x2-2x-10>5,∴x<-3或x>5


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若關于x的不等式a≤
3
4
x2
-3x+4≤b的解集恰好是[a,b],則a+b的值為( 。
A、5
B、4
C、
8
3
D、
16
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B,C是直線l上不同的三點,O是l外一點,向量
OA
,
OB
,
OC
 滿足:
OA
-(
3
2
x2+1)
OB
-[ln(2+3x)-y]
OC
=
0
,記y=f(x).
(1)求函數(shù)y=f(x)的解析式:
(2)若關于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍;
(3)若對任意x∈[
1
6
,
1
3
]
,不等式|a-lnx|-ln[f′(x)-3x]>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是首項為4,公差為1的等差數(shù)列,Sn為數(shù)列{bn}的前n項和,且Sn=n2+2n.
(1)求數(shù)列{an}及{bn}的通項公式an和bn
(2)f(n)=
n+3,n為正奇數(shù)
2n+1,n為正偶數(shù)
問是否存在k∈N*使f(k+27)=4f(k)成立.若存在,求出k的值;若不存在,說明理由;
(3)對任意的正整數(shù)n,不等式
a
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
1
n-1+an+1
≤0
恒成立,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b∈{0,1,2},且a,b滿足不等式a-10b+13>0,若ξ=a+b,則Eξ=
3
2
3
2

查看答案和解析>>

同步練習冊答案