橢圓的離心率為,且過點直線與橢圓M交于A、C兩點,直線與橢圓M交于B、D兩點,四邊形ABCD是平行四邊形
(1)求橢圓M的方程;
(2)求證:平行四邊形ABCD的對角線AC和BD相交于原點O;
(3)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值
(1);(2)詳見解析;(3)最小值為
【解析】
試題分析:(1)依題意有,再加上,解此方程組即可得的值,從而得橢圓 的方程(2)由于四邊形ABCD是平行四邊形,所以ABCD的對角線AC和BD的中點重合
利用(1)所得橢圓方程,聯(lián)立方程組消去得:,顯然點A、C的橫坐標是這個方程的兩個根,由此可得線段的中點為 同理可得線段的中點為,由于中點重合,所以,解得:或(舍)這說明和都過原點即相交于原點(3)由于對角線過原點且該四邊形為菱形,所以其面積為由方程組易得點A的坐標(用表示),從而得(用表示);同理可得(由于,故仍可用表示)這樣就可將表示為的函數(shù),從而求得其最小值
試題解析:(1)依題意有,又因為,所以得
故橢圓的方程為 3分
(2)依題意,點滿足
所以是方程的兩個根
得
所以線段的中點為
同理,所以線段的中點為 5分
因為四邊形是平行四邊形,所以
解得,或(舍)
即平行四邊形的對角線和相交于原點 7分
(3)點滿足
所以是方程的兩個根,即
故
同理, 9分
又因為,所以,其中
從而菱形的面積為
,
整理得,其中 10分
故,當或時,菱形的面積最小,該最小值為 12分
考點:直線與圓錐曲線的位置關系
科目:高中數(shù)學 來源: 題型:
已知中心在原點、焦點在x軸的橢圓的離心率為,且過點(,).
(Ⅰ)求橢圓E的方程;
(Ⅱ)若A,B是橢圓E的左、右頂點,直線:()與橢圓E交于、兩點,證明直線與直線的交點在垂直于軸的定直線上,并求出該直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆山西省高三第一學期8月月考文科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線與橢圓相交于不同的兩點,試問在軸上是否存在點,使是與無關的常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年湖南省株洲市高三第五次月考文科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線與橢圓相交于不同的兩點,試問在軸上是否存在點,使是與無關的常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆黑龍江省高二上學期期末文科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的離心率為,且過點(),
(1)求橢圓的方程;
(2)設直線與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆陜西省西安市高二上學期期末考試理科數(shù)學卷(解析版) 題型:解答題
已知橢圓的離心率為,且過點,為其右焦點.
(1)求橢圓的方程;
(2)設過點的直線與橢圓相交于、兩點(點在兩點之間),若與的面積相等,試求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com