已知公比q為正數(shù)的等比數(shù)列an的前n項和為Sn,且5s2=4s4
(Ⅰ)求q的值.
(Ⅱ)若bn=q+sn-1,(n≥2,n∈N*)且數(shù)列bn也為等比數(shù)列,求數(shù)列(2n-1)bn的前n項和Tn
(Ⅰ)若q=1,則5S2=10a1,4S4=16a1,∵a1≠0,
∴5S2≠4S4,不合題意.(2分)
若q≠1,由5S2=4S4
a1(1-q2)
1-q
=4×
a1(1-q4)
1-q

q2=
1
4
,又q>0,
q=
1
2
..(5分)
(Ⅱ)bn=
1
2
+
a1[1-(
1
2
)
n-1
]
1-
1
2
=
1
2
+2a1-a1•(
1
2
)n-2
,(7分)
由bn為等比數(shù)列知:
1
2
+2a1=0
,得a1=-
1
4

bn=
1
4
•(
1
2
)n-2=
1
2n
.(9分)
Tn=
1
2
+
3
22
+
5
23
+…+
2n-1
2n

1
2
Tn=
1
22
+
3
22
+…+
2n-3
2n
+
2n-1
2n+1

兩式相減化簡得Tn=3-
2n+3
2n
(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知{an}是各項為正數(shù)的等比數(shù)列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一個等比中項.
(1)求數(shù)列{an}的通項公式;
(2)若{an}的公比q∈(0,1),設bn=an•log2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:深圳模擬 題型:解答題

已知{an}是各項為正數(shù)的等比數(shù)列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一個等比中項.
(1)求數(shù)列{an}的通項公式;
(2)若{an}的公比q∈(0,1),設bn=an•log2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省中山市高三(上)期數(shù)學試卷(解析版) 題型:解答題

已知{an}是各項為正數(shù)的等比數(shù)列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一個等比中項.
(1)求數(shù)列{an}的通項公式;
(2)若{an}的公比q∈(0,1),設bn=an•log2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省中山市高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知{an}是各項為正數(shù)的等比數(shù)列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一個等比中項.
(1)求數(shù)列{an}的通項公式;
(2)若{an}的公比q∈(0,1),設bn=an•log2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年廣東省深圳市五校高三聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

已知{an}是各項為正數(shù)的等比數(shù)列,且a1a3+2a2a4+a3a5=100,4是a2和a4的一個等比中項.
(1)求數(shù)列{an}的通項公式;
(2)若{an}的公比q∈(0,1),設bn=an•log2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案