在數(shù)列{an}中,,試猜想這個(gè)數(shù)列的通項(xiàng)公式。

 

【答案】

【解析】

試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013082614291108668673/SYS201308261431054826188693_DA.files/image002.png">,所以,。

考點(diǎn):本題主要考查數(shù)列的遞推公式,等差數(shù)列的通項(xiàng)公式。

點(diǎn)評(píng):簡(jiǎn)單題,考察數(shù)列要從多方面入手,如本題中,通過(guò)研究的特征,利用等差數(shù)列的知識(shí),使問(wèn)題得解。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、已知點(diǎn)(n,an)(n∈N*)都在直線3x-y-24=0上,那么在數(shù)列an中有a7+a9=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,an+1=an+ln(1+
1n
)
,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、在數(shù)列{an}中,若a1=1,an+1=an+2(n≥1),則該數(shù)列的通項(xiàng)an=
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中a1=
1
2
,a2=
1
5
,且an+1=
(n-1)an
n-2an
(n≥2)

(1)求a3、a4,并求出數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
anan+1
an
+
an+1
,求證:對(duì)?n∈N*,都有b1+b2+…bn
3n-1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一般地,在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對(duì)任意正整數(shù)m均成立,那么就稱(chēng){an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),設(shè)S2009為其前2009項(xiàng)的和,則當(dāng)數(shù)列{xn}的周期為3時(shí),S2009=
1339+a
1339+a

查看答案和解析>>

同步練習(xí)冊(cè)答案